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1 INTRODUCTION 

The Dynamic Sensor Networks project investigated software tools and techniques for 
unattended ground sensor systems. The DARPA SensIT program introduced a sensor network 
concept for military and civilian uses that had nodes consisting of an embedded processor, digital 
radio, and a number of sensors. The nodes form ad-hoc distributed processing networks 
producing high-quality information with limited resource consumption. Sensor networks support 
quick decision-making and provide timely and accurate situation awareness for soldiers in the 
field (via a PDA-like device) and remote operators in a command center.  An artist system 
concept is shown in Figure 1.  This research was intended to advance this system concept. 

 
Figure 1: DSN Systems Concept 

The DSN project organized a multidisciplinary research team. The USC Information 
Sciences Institute and Distant Focus Inc. researched platform technologies, communications 
subsystems, embedded operating systems, and handheld display systems. Virginia Tech 
concentrated on declarative languages and execution environments, including status visualization 
and planning tools. UCLA developed distribution and aggregation technologies such as network 
protocols and network simulation tools. The DSN project was divided into three tasks: 

 Task 1: Distribution and Aggregation includes node localization techniques, low-power 
data link protocols, power aware routing protocols, and spatial addressing and routing. 

 Task 2: Declarative Languages and Execution Environment includes topographical 
soldier interfaces and a sensor network simulation environment for algorithm 
development, deployment planning, and operational support. 

 Task 3: Platforms includes investigative hardware development to support laboratory 
communications, processing, or localization experiments as well as open-source COTS 
PDA integration and system software in support of the solider interface. 
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For the purpose of providing focus for this research, the DSN team defined three concept 
operation (CONOP) scenarios. The first CONOP is intelligence gathering; small-scale 
collaboration where sensor nodes form small ad hoc groups to identify and track targets to 
provide human-in-the-loop fire support.  The second is called collaborative consensus. This is 
intended to provide reliable data from a large number of unreliable nodes such as from chem/bio 
sensors. The third CONOP is health, status, plus augmented awareness.  This scenario introduces 
the idea of friendly forces traveling through a sensor net gaining tactical support from local 
sensor nodes. Combined, these three scenarios defined distinct modes of operation of a sensor 
network and operational requirements that drive the architecture definition. The SensIT program 
sponsored a series of field experiments to stimulate the development of collaborative 
technologies and facilitate validation of the multiple approaches. 

The following sections are organized by task.  Section 2 details the efforts related to Task 
1: Distribution and Aggregation, Section 3 covers Task 2: Declarative Languages and Execution 
Environments, and Section 4 discusses Task 3: Platforms.   Section 5 covers Field Experiments.
Section 6 covers a summary of all deliverables.  Section 7 presents the personnel and their
contributions to this effort.  Section is a list of Publications resulting from this effort.  Section 9 is
a list of Acronyms and finally, Section 10 is a list of Addenda.  

                                                                      2 



2 DISTRIBUTION AND AGGREGATION 

Important characteristics of wireless sensor networks are how they communicate and 
collaborate to understand the environment.  The physically distributed sensor nodes leverage 
spatial diversity to improve target classification and triangulate/track targets within a sensor 
field.  Management of their aggregate behavior defines sensor field lifetime, capabilities, and 
performance.  The DSN project investigated a number of topics related to the distribution and 
aggregation research area.  The primary focus was related to the development of a modeling and 
simulation framework called SensorSim, which is described in Section 2.1.  The simulation tools 
were used to develop and characterize media access control (MAC) and wireless network 
routing protocols developed by the DSN team.  These efforts are described in Section 2.2.  
Finally, localization of nodes is important in these distributed collaborative systems. Techniques 
for GPS-less localization are detailed in Section 2.3.  

2.1 Modeling and Simulation 

2.1.1 SensorSim 
UCLA developed a framework for detailed modeling and simulation of distributed sensor 

networks called SensorSim. This tool is an extended version of ns, an open-source network 
protocol simulator. The basic approach was to introduce to ns the notion of a set of node 
resources (processor, sensor, radio etc.) that are used for various tasks in the protocol stack and 
the application agents. Resources have a number of modes with different levels of power 
consumption. For example, the radio model has transmit, receive, idle, and sleep modes, and 
takes into account effects of data rate and radio frequency (RF) power amplification on the 
overall power consumption. These models are used to compare and evaluate design tradeoffs for 
various aspects of the distributed system, such as media access control (MAC), network routing, 
distributed data management, and application-level interactions.  SensorSim introduced a number 
of features unique to network simulators: 

The framework adds hybrid simulation capabilities to ns. The simulated network can consist 
of a mix of virtual (simulated) nodes and real (physical) nodes. In other words, some of the 
nodes in the simulated network have real nodes performing the work. This is particularly 
useful in evaluating MAC protocols. The approach is based on using a PC with a node as a 
gateway to a network of real nodes, each of which is represented by a proxy node in the 
simulated network. The simulated network generates stimulus traffic for the smaller “real” 
sensor network.   

• 

• 

• 

Another form of hybrid simulation capability was added to ns whereby an application written 
as a Unix process can “run” on top of a simulated node. Essentially, the application interfaces 
to the routing layer of the simulated node via an API that allows packets to be sent and 
received. This capability has been leveraged at UCLA to simulate mobile scripts developed 
under the SensIT Sensorware project, which was led by Rockwell Science Center. 

The battery simulation models that go beyond the naive "fixed bucket of energy.”  For 
example, the battery model takes into account the rate at which the power is being consumed. 
Additional models were developed that take into account the pulse discharge profile 
generated by the protocols.  
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Targets are modeled in the simulation framework as target node entities.  They interact with 
sensor node entities over sensor channels that can be modeled with physical layer models or 
logical sensor layer (probability detection event) models.   

• 

The SensorSim architecture is shown in Figure 2.  The user node runs a user application that 
interacts with the network simulation over wireless channels.  A number of real and simulated 
sensor nodes execute the distributed sensor processing application(s) and interact with other 
nodes over the wireless channel(s) and targets over the sensor channel(s).  The functional model 
of the node simulates the hardware and measures performance. The power model of the node 
logs power consumption of the various simulated components.  Finally, target nodes simulate the 
behavior of targets of interest and generate stimulation datasets for the nodes.  Alternatively, real 
data can be used from data collection experiments. 

 
Figure 2: SensorSim Architecture 

The SensorSim tool is available on the UCLA web site: http://nesl.ee.ucla.edu/sensorsim/.  
It has been used extensively in this project to evaluate sensor networking protocols and 
collaborative application environments and has been adopted by a number of the SensIT 
community researchers.  Many of the features and models have been incorporated into the ns2 
sensor network simulation tool environment and are now made available to a broad network 
research community. The SensorSim tool was also used to evaluate data collections at the various 
SensIT field experiments. 

2.1.2 SensorVis 
In addition to SensorSim, the UCLA team developed a scenario generation and visualization tool 
called SensorVis.  This tool supports diverse scenario generation, including node deployment 
patterns, target trajectories, sensor characteristics, and node attributes. The tool can be slaved to a 
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running SensorSim simulation to configure the experiment and visualize the results overlaid on 
publicly available maps.  It can also be used interactively to monitor and track the activities in a 
real sensor network.  SensorVis can generate XML output for further analysis of the behavior of 
the sensor network and has been used to read in SITEX experiment scenarios.  A simulated 
sensor network scenario of the UCLA campus is shown in Figure 3. SensorVis also introduced 
other planning capabilities to the DSN sensor tool suite. Several coverage analysis algorithms 
were integrated with the scenario builder. This allows the sensor network designer to create 
topologies with desired coverage performance. 

 
Figure 3: SensorVis UCLA Campus Scenario 

 

2.2 Communications and Networking Protocols 

2.2.1 Spatial Addressing 
Since wireless spectrum is a broadcast medium, each wireless interface requires a media 

access control identifier (MAC address).  However, the typical data payload size in wireless 
sensor networks is very small.  A globally unique MAC address appended to every packet would 
present too much protocol overhead for very small packets.  DSN addresses this problem by 
using a smaller address size and employing spatial address reuse, similar to those used in cellular 
systems.  Figure 4 shows an example of spatial address reuse.  There are two aspects of this 
problem: dynamic assignment algorithms, and address representation. 
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Figure 4: Spatial Address Reuse Example 

The dynamic assignment algorithm developed  under  this effort operates as shown in 
Figure 5: 1) the network is operational (nodes have a valid address), 2) the nodes listen to 
periodic broadcasts of neighboring nodes, 3) in case of an address conflict, the node is notified, 
and 4) a non-conflicting address is chosen and broadcast in a periodic cycle.  At this point, the 
new node has joined the network.  This algorithm has a number of beneficial features.  It 
supports additive convergence in that the network remains operational during address selection 
and mapping from a unique id to a spatially reusable address.  The algorithm is also valid with 
unidirectional links.   

0
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0
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0
1

2 41 3
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Figure 5: Distributed Assignment Algorithm 

Address representation is a problem in sensor networks because the number of unique 
addresses varies with the node density.  The UCLA approach is to use variable-length encoded 
MAC addresses so that the protocol dynamically picks addresses according to local node density. 
This approach was initially implemented and evaluated using the PARSEC simulator, then was 
incorporated into SensorSim. Extensive simulation and analysis has shown that the MAC header 
overhead is reduced by a factor of three (3X) relative to fixed addresses and by an order of 
magnitude (10X) relative to Ethernet-type 48-bit addresses (see Table 1). The scheme is 
perfectly scalable from a few to millions of nodes at practical node densities; it handles 
unidirectional links, and is robust to node destruction, introduction, and mobility. The scheme 
can be used for both TDMA-type MAC as well as CSMA-type MAC.  Figure 6 shows a plot of 
average node density compared to average encoded address size in bits.  

Table 1: Addressing Representation Schemes 

Scheme Address Selection Type Address Size (bits) Address Scalability

Globally Unique Manufacturing 128 + 

Network Wide Unique Deployment 14 - 

Fixed-size Dynamic Centralized / Distributed 4.7 +/- 

Encoded Dynamic Distributed 4.4 + 
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 Figure 6: Node Density Versus Average Address Size 

2.2.2 Low-Power Network Routing 
UCLA investigated a number of low-power network routing protocol approaches that are 

described extensively in the publications included in Section 10.  One such approach is called 
Adaptive Transmission-power Heuristic and Energy-optimizing ad-hoc Network routing 
Algorithm (ATHENA), which uses alternate routes to maximize network lifetime and 
dynamically adapts transmission power to find energy-optimal multi-hop paths. The alternate 
routes approach exploits the diversity of paths to distribute traffic so as to avoid burnouts along a 
single heavily trafficked path. Packet dispersers and combiners are used for this purpose, and 
several deterministic as well as stochastic algorithms for doing this were investigated via 
simulation in ns. The path diversity approach is applicable to routing approaches such as DSR, as 
well as gradient based routing. UCLA also conducted studies of what metrics are meaningful in 
evaluating the schemes, and proposed the use of histogram of remaining battery energy as an 
appropriate metric, with the RMS of the histogram capturing the two essential properties: area 
and spread. The Data Combining entities, which are created automatically at intermediate nodes, 
combine data packets that are headed in the same destination. It essentially lowers the area of the 
histogram.  Simulations show a significant energy-latency trade-off is enabled by this technique 
relative to gradient or DSR routing. A second approach is deliberate spreading of the traffic, for 
which several schemes were investigated including energy-based, stochastic, stream-based, and 
combinations. Spreading reduces the RMS metric by reducing the spread in the histogram. 
Simulation results show that the stream-based scheme works best. However, spreading is not 
beneficial under all circumstances, and ideally it is better when averaged over all possible future 
traffic patterns. This requires detection of bottleneck nodes in the network. 

2.3 GPS-less Localization 
The discovery of absolute and relative locations of individual nodes is very important in a 

sensor network.  The location attribute is often used in location-based naming and geographic-
addressing of nodes.  Location is used in geographical routing protocols.  Location is also used 
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for tracking of moving phenomena (vehicles, personnel, etc.).  The Global Positioning System 
(GPS) is used for this purpose in many networking systems, but it is not sufficient.  GPS requires 
line of sight to multiple satellites, which can be hampered by trees or buildings.  It also 
introduces cost to a sensor system and consumes power.  Surrogate GPS systems have been used 
in military systems, but they are also susceptible to failure and add cost.  The UCLA team 
examined approaches for deriving location if only a subset of nodes were aware of their location 
as shown in Figure 7. 

Known Location
Unknown Location

 
Figure 7: Sensor Network with Known and Unknown Locations 

UCLA investigated a number of multilateration algorithms for GPS-less sensor node 
localization, including basic centralized multilateration, iterative multilateration, and finally 
collaborative multilateration.  The algorithm for basic multilateration is given in Figure 8.   

 
Figure 8: Basic Multilateration 

In this centralized approach, the nodes route messages to a central point where the equations are 
solved simultaneously.  This has a number of disadvantages.  Timing synchronization is required 
and high traffic congestion around the central node leads to higher message power consumption 
and higher latencies for location updates.  Distributed approaches are preferable.  They require 
less traffic and therefore less power.  They have better handling of environmental variations 
(speed of ultrasound, radio path lost), and are more robust to node failure.   

Iterative multilateration, for example, is basic multilateration applied iteratively across 
the network.  The location estimate is improved with each iteration step of the algorithm until 
locations settle to a steady state.  This approach is diagramed in Figure 9.   
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Figure 9: Iterative Multilateration 

The percentage of nodes able to resolve their locations is given in Figure 10.  For moderate 
numbers of nodes, iterative multilateration works well for percentages over 20%.  However, 
iterative multilateration may stall if the network is very sparse or the percentage of beacons is 
very low.  Terrain obstacles can also have a significant impact on location accuracy.  One 
problem with iterative multilateration is that if the network is large, successive errors will 
accumulate and degrade location estimates.   

 
Figure 10: Resolved Nodes Versus Beacon Densities 

 

This fact motivated the development of collaborative multilateration. Collaborative 
multilateration is described in Figure 11.  It uses location information over multiple hops, but 
weights the error estimate of the indirect paths.  Solving the equations operates the same as basic 
multilateration. 
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Figure 11: Collaborative Multilateration 

A complementary approach uses collaborative sub-trees.  With this approach, location estimation 
takes place at the scope of a neighborhood.  Each unknown node (shown in Figure 12) must have 
at least three participating neighbors and a participating node is either a beacon node or an 
unknown node connected to three participating nodes.  The collaborative sub-trees can zoom in 
and out to form a well-determined system.  It can avoid degenerate cases and obstacles.  It also 
reduces the error propagation.  Error in the location estimates can further be reduced if 
computation takes place at a central point.  This is less of a burden when the size of the 
neighborhood is bounded.   

 
Figure 12: Collaborative Sub-Trees 

Extensive simulation analysis and field-testing of these concepts was performed under 
this research effort.  In simulation for example, the accuracy of iterative multilateration is shown 
in Figure 13.  This analysis was performed using the SensorSim tool suite.  For indoor and 
outdoor physical tests, two platforms were used: 1) a custom ultrasound array microsensor 
developed at UCLA called Medusa, and 2) commercial Rockwell HYDRA microsensors using 
RSSI estimates. UCLA conducted extensive RSSI measurements at various locales on UCLA 
campus and in places near the campus to validate the iterative multilateration based joint location 
and channel estimation scheme. Analysis of results indicates good localization in open areas 
similar to those used for SITEX experiment, but problems with multipath in the presence of 
nearby structures. Joint RSSI - ultrasound schemes were considered where ultrasound provides 
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additional distance measurement via ranging, while the radio not only provides RSSI data but 
also serves to synchronize the ultrasound ranging. The range accuracy characterization of these 
platforms is summarized in Figure 14.  Further information and analysis of multilateration 
algorithms is provided in the academic papers included in the addendum of this report. 

 
Figure 13: Iterative Multilateration Accuracy 

 

 
Figure 14: Ultrasound and RSSI Platform Characterizations 

 

                                                                            11 



3 DECLARATIVE LANGUAGES AND EXECUTION ENVIRONMENT 

3.1 Graphical Soldier Interfaces 
Figure 15 provides an artists conception of a soldier graphical sensor network interface 

that supports simple tasking, status display, maintenance, and situation assessment functions.  A 
number of technologies were converging that made a graphics-rich interfaces feasible without 
bulky computers.  First, personal digital assistant devices were becoming widely available in the 
commercial marketplace and they have advanced to the point of having color displays, high 
performance 32-bit embedded processors, and megabytes of memory. Second, complete 
graphical libraries were migrating to these platforms, including Java and X-Windows.  The PDA 
platforms are described further in Section 4.  This convergence of technologies enabled the DSN 
team to explore mechanisms for having soldiers interact with the sensor network.   

 
Figure 15: Artist Conception of Graphical User Interface 

The DSN team collaborated with the BBN system integrator contractor to provide a 
graphical front-end which interfaced to query and tasking libraries being developed within the 
SensIT community.  The distributed database query system being developed at the University of 
Maryland was the primary integration target in support of the SITEX SensIT program field 
experiments.  The graphical interface was also was intended to support the SensorSim simulation 
tool to control and visualize simulated sensor fields.  Other tools were incorporated as needed, 
such as the UCLA coverage server and Virginia Tech placement server.  

3.1.1 First Generation Graphical User Interface 
The first generation of the user interface, shown in Figure 16, was implemented in Java2 

for a Linux or Windows laptop.  Migration to Personal Java under Windows CE was an eventual 
target for this implementation.  Personal Java is a subset of Java2, however, the subset excluded 
many of the most useful graphics libraries from the implementation. In the end, this made 
Personal Java not feasible as a target.  Nevertheless, full Java implementations were promised for 
the IPAQ PDA either under WinCE or Linux.  The graphical user interface was an extensible 
object-oriented Java architecture that supported a number of display and query mechanisms.  For 
query, the user could highlight a region using a mouse or pen on the touch screen and tap for a 
pop-up menu of stored queries.  This was the primary query mechanism.  Queries could also be 
manually entered in a text-based dialog.  The display system supported pan and zooming 
mechanisms and overlaid sensor field status information over a topographical vector map or 
registered satellite image.  The tool can visualize sensor detection and target track events in real 

                                                                      12 



time.  For maintenance, the tool can display sensor node GPS-reported locations, id, battery 
status, and sensor configuration. 

 
Figure 16: First Generation GUI 

 
Figure 17: SITEX00 Experiment 

This first generation GUI was used in support of the BBN-led SensIT SITEX00 
experiment at 29 Palms, CA in August 2000. The GUI was integrated with the sensor field 
coverage algorithms and software developed by UCLA. At 29 Palms, the GUI communicated 
with the sensor field to acquire sensor node positions; these positions were fed to the sensor field 
coverage algorithms to provide calculation and visualization of sensor field coverage. Sensor 
nodes were moved to demonstrate that the software could respond to changes in the sensor field. 
As a second part of the experiment, the GUI was operated in conjunction with a digital compass, 
GPS, and head-mounted display, allowing the user to navigate the sensor field. The map rotated 
to maintain proper orientation for the operator.  This combination of the sensor field coverage 
algorithms and the user interface allowed the operator to accurately place sensor nodes to their 
best effect. In this mode, a user specifies an area to be monitored by sensors.  This monitored 
area is analyzed using sensor deployment algorithms developed at Virginia Tech and a sensor 
deployment plan is created. The user is shown in the GUI how to place the sensors according to 
the deployment plan.  Guiding the user through sensor placement requires knowing where the 
user is physically located, where the user is headed, and where the user is looking.  The small 
box containing a GPS unit, a digital compass, and other user-related sensors provided the user 
with this feedback. Using this interactive GLASTRON heads-up display, the researchers were 
able to navigate, view, and measure the SITEX00 sensor field.  This version of the software ran 
on a laptop in a backpack.  A GPS antenna was mounted on the backpack strap at the shoulder, 
and a digital compass was located on the helmet. A photo from the SITEX00 field experiment is 
given in Figure 17.  This first generation GUI was used in the subsequent field exercises, but did 
not achieve the goal of running on a PDA.   
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Unfortunately, a robust Java distribution never materialized for PDAs and the 
performance of interpreted Java distributions never performed well enough to support the load of 
a graphical user interface. It had been hoped that the GUI would easily port to the iPAQ, but it 
did not. Java programs are intended to be portable, but they are only portable to platforms for 
which a Java virtual machine (Java VM) exists. The team experimented with the Kaffe 
(kaffe.org), a clean-room Java VM implementation, but it was not mature enough to support all 
Java features used by the GUI. There was a large effort at Compaq to port officially licensed 
Java VM, but an unfortunate clause in Sun's license agreement prevented the team from 
experimenting with these ports. The clause prohibits redistribution until a port passes 100% of a 
provided test suite. At the time, it passed all but a handful of these tests but was unavailable. 
Even when a Java VM did become available for the iPAQ, none of the initial versions had a 
sophisticated “just-in-time” JIT compiler so there were considerable performance problems. The 
DSN GUI ran so slowly it was unusable. It was not clear that the Java VM performance 
problems would be fixed soon, so an alternative approach was investigated. 

3.1.2 Second Generation Graphical User Interface 
The second generation DSN GUI was motivated by a desire to demonstrate a sensor 

network interface running on a handheld computer. It was also motivated by a desire to improve 
the map-handling capabilities of the GUI itself, allowing more types of data to be displayed and 
having a more structured interface with the sensor network. This was achieved by integrating the 
GUI with an open-source geographical information system called GRASS and an open-source 
SQL database server called PostgreSQL.  When examining the requirements of the GUI, such as 
raster and vector import, display, map registration, and geographical browsing, it was realized 
that many of these features are standard in geographic information systems (GIS). In order to 
avoid duplicate work, it was decided to explore the possibility of adapting an existing GIS 
system to implement the GUI. GRASS (Geographic Resources Analysis Support System) is an 
open source, free software GIS system originally developed in the early 1980s by the U.S. Army 
Corps of Engineers' Construction Engineering Research Laboratory (USA/CERL). GRASS 
continues to be actively maintained today by a group of users/developers without involvement 
from USA/CERL. GRASS is available for Linux and uses the X Window System, although it 
had never been used on an iPAQ before the DSN team attempted to do so. Getting GRASS to 
work on the iPAQ was a relatively straightforward recompile for the ARM processor. It worked 
without modification. This is strong confirmation of the decision to use Linux on the iPAQ to 
improve portability. 

GRASS provided the ability to import a tremendous amount of existing GIS data into the 
DSN GUI. GRASS supports a myriad of common, (and many not-so-common), GIS data formats 
so that it is a simple matter to import raster and vector layers from sources such as the USGS. 
For example, for SITEX00, the team had access to digital orthophoto quadrangle (aerial 
photography), man-made features, roads, vegetation, non-vegetative features, water, and 
topography.  The second generation GUI operates by using native GRASS commands to display 
one or more of these static data layers. The GUI also uses the GRASS library functionality to 
draw dynamic sensor network data on top of the static layers. Dynamic data includes icons for 
sensor nodes and users and sensor network detection results. This second version of the GUI 
used a PostgreSQL database as the data interface from the sensor network to the GUI. This 
provided a standard, well-documented interface layer, which simplified the task of integrating 
sensor network and GUI software developed independently. The PostgreSQL database also 
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provided the GUI with a persistent record of all sensor network events for later replay. The 
PostgreSQL interface did not provide a mechanism for tasking the sensor network from the GUI.   

This second generation interface was used at SITEX02 at 29 Palms in November 2001.  It 
supported pan and zoom functionality of the original Java GUI and the ability to enable or 
disable various registered static and dynamic data layers.  Using the extensive scripting language 
and graphical data manipulation utilities available in GRASS, the GUI also supported 3D 
perspective projections.  A collection of screen shots is given in Figure 18.  Although the system 
proved to be extremely flexible, it was also somewhat cumbersome.  GRASS is intended for map 
manipulation and geographic data overlay for a wide variety of disciplines, such as geography, 
geology, oceanography, and climatology.  It’s support for dynamic data streams was extremely 
limited and the refresh rate of the map was one frame per second at best.   

 
Figure 18: GRASS GUI 

3.1.3 Third Generation Graphical User Interface 
The third and final generation of the GUI, called GeoTV, builds on the capabilities of the 

previous generations while adding increased temporal browsing capabilities, better graphics 
support, and more general applicability.  The fundamental motivation behind GeoTV is the 
recognition that many aspects of the sensor network visualization problem are dynamic in nature 
because of changes in network configurations, target activity and user queries. These dynamic 
qualities lend a temporal aspect for much of the data produced and consumed by the GUI. 
However, many GIS and RDBMS systems lack good support for dealing with temporal data.  
GeoTV provides the ability to browse geographic data, (as in a typical GIS system), but it also 
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allows the user to browse temporally. This "geo-temporal visualization" provides the user with a 
birds-eye map and a timeline. Each of these elements provides an overview of available global 
information in both space and time. The user indicates a region of interest on the map and a 
region of interest on the timeline. GeoTV responds by rendering a detailed view of the desired 
regions in the main panel. 

The simple selection of regions on the map and timeline provide a powerful means for 
the user to graphically specify complex queries. For example, questions such as "Where have 
vehicles passed near this building in the past hour?" or "How many people have been detected in 
a given room over the past day?" can easily be answered with a few taps of a stylus on the map 
and timeline.  Once GeoTV displays a focused region, the user can pan or zoom spatially and can 
also browse through time using VCR-like controls. When new data is actively being retrieved 
from a sensor network, this allow the user to request real-time visualization tasks such as 
"Display all currently detected vehicles including their tracks for the last 2 minutes." 

 
Figure 19: GeoTV at BAE SYSTEMS 

 
Figure 20: GeoTV at Spesuti Island 

GeoTV has sophisticated rendering support. It can render SVG content for vector data 
layers as well as icons. All vector rendering is antialiased, which gives increased effective pixel 
resolution. This is important with displays such as that on the iPAQ that have many fewer pixels 
than a typical desktop display. GeoTV graphics can also include translucence, which has been 
used to good effect to indicate temporal separation of spatially coherent events. The graphics 
libraries developed for GeoTV are generally useful and are available to the open-source from 
http://www.xsvg.org.  Unlike previous versions, GeoTV does not depend on the large external 
software packages required such as GRASS and PostgreSQL. GeoTV includes built-in scalable 
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graphics support. GRASS is used as an offline manner for importing GIS data since GeoTV 
accepts only a limited number of vector data formats (DXF and SVG) while GRASS can convert 
to DXF from many different formats. In the place of PostgreSQL interface, GeoTV interfaced 
directly to the COUGAR query interface system developed by Cornell University 
(http://cougar.cs.cornell.edu/).  A preliminary version of GeoTV was demonstrated at the 
November 2002 PI meeting in Boston with data received over the Internet from BAE Systems in 
Austin, TX (shown in Figure 19). After the DSN project, GeoTV was used to display results 
from a DARPA PAC/C program experiment at Spesuti Island, Aberdeen Proving Ground, in 
Maryland. This display is shown in Figure 20. GeoTV continues to be actively developed and is 
available from http://www.geotv.org.  

3.2 Sensor Placement Tool 
Virginia Tech developed a sensor node placement optimization tool the addressed the 

problem of how to place and deploy sensors for a given set of application requirements in a 
specified geographic region.  The application requirements include a number of diverse factors, 
such as target type, sensor type, terrain effects, errors in deployment, and coverage and 
redundancy goals.  In terms of sensor types, sensors vary in range, accuracy, power, and 
detection probability for different kinds of targets.  Targets under consideration range from 
personnel to vehicles.  Likely target behavior can also be a factor (speed range, weight, 
loudness).  Initial work on the coverage server was performed using the NS-2 sensor network 
simulator.  An algorithm has been created that “seeds” the nodes onto the map; this seeding 
process is iterative, includes a random component, and is biased by the features on the map.    

 
Figure 21:Terrain-Driven Placement Scenario 
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The placement tool was evaluated in a variety of scenarios.  

 

Figure 21 shows the visualization interface of the sensor placement tool for one such 
scenario.  In this scenario, the placement engine was instructed to favor roads and avoid rivers.  
The performance on the tool was measured on several metrics, including the quality of coverage, 
the tolerance to faults of the system, and the connectivity of the resulting wireless network.   
Note that the tool does not directly optimize these metrics, but they are related to the optimizing 
function. In addition, the run time is linear in terms of the number of nodes and the number of 
geographic features.  The tool takes Spatial Data Transfer Standard (SDTS) maps as input. 
Figure 22 shows an alternative scenario for redundant perimeter protection and Figure 23 shows 
a contour coverage computation view.  Further details of the coverage server tool are provided in 
the addendum. 

                                                                           18 



 
Figure 22: Redundant Perimeter Placement Scenario 

 
Figure 23: Coverage Contour Generation 
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4 PLATFORMS 

The platform task in the DSN project investigated hardware prototypes and system 
software infrastructure for mobile soldier interfaces and prototype microsensors.  The primary 
focus of this task centered on Linux development for embedded processor systems using the 
Compaq IPAQ™ personal digital assistant.  This work is described in Section 4.1.  The other 
major task included a communications of a GPS-synchronized radio, which is described in 
Section 4.2.  The report concludes with a summary of DSN field experiments in Section 5. 

4.1 Embedded Linux on IPAQ™ 
The Compaq IPAQ™ 3600 shown in Figure 24 is a commercial personal digital assistant 

(PDA) built on the StrongARM 32-bit embedded processor.  This model has 32MB of SDRAM, 
32MB of Flash, and a 320x200 color display.  The IPAQ also has a connector on the back for a 
variety of expansion sleeves, such as Compact Flash and PC Card (PCMCIA). This PDA was 
unique at the time in that it supported the open-source Linux operating system.  The DSN team 
realized that this would be an ideal prototyping platform for the soldier user interface. It has a 
processor with enough capability to run operating systems originally designed for larger desktop 
computers. The color display is important for communicating more information in fewer pixels. 
The reflective display makes outdoor viewing quite easy, even in direct sunlight, unlike 
traditional laptop displays that lose contrast in sunlight. Perhaps most importantly, the IPAQ is 
unique among handheld computers in that it provides a broad expansion connector, making much 
of the processor system bus available. This is very appealing as it could be used to develop a 
custom sleeves tailored for sensor network applications. 
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Figure 24: IPAQ 3600 Running Linux 

4.1.1 DSN Linux Contributions 
The open-source Familiar distribution at www.handhelds.org is maintained in part by researchers 
at Compaq Cambridge Research Laboratory. The DSN team added a number of tools to this 
distribution to make it robust for sensor network applications, including: 

• ISI created a package management system called IPKG.  This system is similar to Debian 
DPKG or RedHat RPMs, but tailored to handheld systems with no hard disk, just a flash 
file system. IPKG became the standard package management system for embedded Linux 
computers using the Familiar distribution and is used by a number of commercial 
embedded systems (http://www.handhelds.org/z/wiki/iPKG). 

• ISI developed a full-screen pen-based stroke recognizer (XStroke) for text and command 
entry directly on the IPAQ display.  It was developed for the GeoTV map display 
interface to input single-letter commands. This is now the default character input 
mechanism for the IPAQ Familiar Linux distribution (www.xstroke.org).  

• ISI has contributed code to support trapezoid drawing in the Xfree86 Render Extension, 
later adapted into Cairo Vector Graphics Library (www.cairographics.org).  For DSN, 
this work enabled anti-aliased display of translucent objects on the GeoTV GUI. For the 
wider open-source community, this contribution is beginning to have a significant impact 
on X-Window systems for most desktops by adding translucency to X applications, 
window managers, etc. 
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• ISI developed a Scalable Vector Graphics Library (XSVG) for rendering SVG vector 
images.  For the GeoTV GUI, this library is used for vector data (roads, rivers, buildings, 
floorplans, etc.)  and dynamic data such as detection and track events.  This library is 
available at www.xsvg.org and is being actively used by application environments such 
as GNOME and KDE. 

4.1.2 Video Surveillance using IPAQ 
One of the applications of investigation under the DSN project was video surveillance 

and conferencing using portable handheld devices. The development platform consisted of a 
Compaq IPAQ 3600, a dual PC card sleeve, a Cabletron 802.11b PC card, and a Videum PC 
Card camera.  The camera supported 320x200 color images at up to 15 frames per second.  A 
photo of the platform is shown in Figure 25 (left).  A power consumption breakdown is given in 
Figure 25 (right).  Transmitting 15 frames per second, the entire system consumed less than 1.2 
Watts including the processor (172mW), camera (533mW), and wireless card (357mW).  This 
entirely COTS prototype compared well with research microsensor platforms used solely for 
acoustic data processing and indicated that video is quite possible with the state of the art. 

 
Figure 25: DSN Video Platform 

The software infrastructure used for video surveillance experiments was based on open-
source video conferencing software package called vic.  This software was ported from desktop 
Linux to the IPAQ.  A number of optimizations were introduced to make this port feasible.  
Since Linux usually runs on desktop processors with IEEE floating point, many of the video 
coder/decoders (CODECS) did not perform well without floating point on the IPAQ.  Table 2 
gives the achievable frame rates using an IPAQ for different scenes.  The best CODEC, nv, was 
selected for the SensIT field experiments.   
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Table 2: Vic CODEC Frame Rate Analysis 

 

4.2 GPS-Synchronized Communications 
ISI constructed an experimental platform to evaluate the idea of using GPS to 

synchronize radios in a sensor network.  Some GPS units provide a 50ns-accurate clock 
reference and the concept was to use this timing pulse to enable fine-grained TDMA 
communications.  The DSNCOMM board block diagram is given in Figure 26. 
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Figure 26: DSNCOMM Block Diagram 

A photo of the DSNCOMM board for GPS-synchronized communications is given in 
Figure 27. The board uses a commercial Motorola Oncore UT GPS daughter board that can 
provide the 50-ns accurate 1 pulse-per-second clock reference. A firmware update of the GPS 
chipset allows 100 pulses-per-second, which enables finer granularity TDMA slots. The radio is 
a 100 kbps 900 MHz band RFMD 9901/9902 FSK radio. Five DSNCOMM boards were 
fabricated under the DSN project. Figure 28 is a screen capture of the node transmitter output 
spectrum, which is generating a 60 kHz square wave through the radio. 
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Figure 27: DSNCOMM Board 

 

 
Figure 28: DSNCOMM Radio XMIT Spectrum 

The concept of operations is to allow the sensor nodes to remain off for extended periods 
of time and support very narrow time windows where communications exchanges occur. GPS is 
the only mechanism that doesn’t drift because of thermal or other environmental conditions, so 
time synchronization is possible to a very fine degree. The operational states of the radio are 
given in Table 3. The energy measurements for the various states are provided in Table 4. The 
total energy consumed per packet is 37.2165 Joules.  For a packet size of 10,000 bits (100ms @ 
100kbps), the energy per bit is 3.7E-3 joules/bit. 
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Table 3: DSNCOMM Communication States 

SYNC GPS does cold start; acquire satellite almanac, ephemeris, and time of 
day; GPS turned off. 

SLEEP Set the timer for 30 seconds before scheduled transmit time, then sleep 
the processor. 

WAKE When timer trips, power up the processor and then turn on the GPS.  

SETTLE Five milliseconds before transmission turn on the transmitter and allow 
the PLL to settle. 

TRANSMIT At the 1 PPS edge, transmit for 100 milliseconds at 100 kbps. Total data 
transfer is 10000 bits.   

SLEEP Turn off the transmitter and sleep the processor. 

 
Table 4:  DSNCOMM Energy Estimates 

Item Duration Voltage Current Watts Joules 
Initialization (done once per day or less) 
GPS Cold Start 300 sec 5V 180 mA .9 W 270 
Operation (per packet) 
Processor sleep (with 
timer running) 

4 hours 5V 100e-6 A 0.5 mW 7.2 

Processor on and GPS 
reacquire 

30 sec 5V 200 mA 1 W 30 

TX Settle 10 ms 5V 30 mA 0.15 W 0.0015 
TX Data 100 ms 5V 30 mA 0.15 W 0.0150 
Total Joules per packet 37.2165 
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5 FIELD EXPERIMENT SUMMARY 

DSN participated in all three SensIT field experiments and other demonstrations  

5.1 SITEX00, 29 Palms, August 2000 
The DSN team participated in SITEX00 in August 2000 at Twenty-Nine Palms, CA.  A 

prototype user platform was fielded using a laptop, heads-up display, GPS, and digital compass.  
The first generation GUI (see Section 3.1.1) was used to navigate the sensor field and visualize 
changes to the maximal breach path in real time. 

 
Figure 29: SITEX00 Experiment 
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5.2 SITEX01, 29 Palms, March 2001 
At SITEX01 in March 2001, the DSN team collaborated with the Rockwell-led 

SenosrWare project. The experiment consisted of ten Rockwell HYDRA platforms with 
geophones and one laptop with a webcam video camera.  The HYDRA nodes performed a wave 
intensity comparison algorithm (WIC) to generate bearings to the target.  The results were 
displayed on the first generation GUI.  The experiment also included a video surveillance 
demonstration.  The laptop generated the camera data, but the results were displayed on a IPAQ 
for the first time.  The DSN team also supported the main BBN/Sensoria experiment using the 
first generation GUI.   A summary of the experiment is shown in Figure 30. 

 
Figure 30: SITEX01 Experiment 
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5.3 SITEX02, 29 Palms, November 2001 
At SITEX02 in November 2001, the DSN team fielded three prototype IPAQ platforms 

and collected video data for tracked and wheeled vehicles.  Live GPS from DSN-instrumented 
vehicles was displayed on the second generation GUI.  DSN also supported the main BBN-led 
experiment with Sensoria 2.0 nodes using the first generation Java GUI.  A number of secondary 
experiments for coverage algorithms were also performed.  A summary of the experiment is 
provided in Figure 31 and example video is shown in Figure 32. 

 

 
Figure 31: SITEX02 Experiment 
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Figure 32: SITEX02 Video Frames 
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6 DELIVERABLES SUMMARY 

6.1 Deliverables for FY99 

6.1.1   Distribution and Aggregation 
1) Initial Network Services API Specification (UCLA) [complete] 

UCLA has defined a set of functions that make up this API specification for the DSN 
platform and continues to analyze the underlying protocols using the ns simulation 
tool. 

6.1.2  Declarative Languages and Execution Environment 
2) Topographical Map GUI Prototype Specification (VT) [complete] 

Virginia Tech delivered a first release of the GUI that is able to process user inputs 
and generates a format appropriate for U-Maryland query language. 
 

3) Query Language Integration Specification (VT) [complete] 
Virginia Tech has been working with the SenseIT community at the BBN telecons 
and has specified an interface to generate user inputs for the U-Maryland query 
language. 

6.1.3  Platforms 
4) DSN Research Platform Specification (USC/ISI) [complete] 

USC/ISI has completed the design of the comm. subsystem board. 

6.2 Deliverables for FY00 

6.2.1  Distribution and Aggregation 

1) NS Simulation Code Release and Documentation (UCLA) [complete].  
UCLA has made the SensorSim simulator code available to other members of the 
SensIT community.  USC/ISI (Deborah Estrin’s group) is making SensorSim a formal 
part of the ns release. 

 
2) Spatial Addressing and Routing Simulation (UCLA) [complete]. 

UCLA is investigating addressing and routing protocols currently using the ns 
simulator.  This work is exercising the ns simulator development.  The simulation 
work is complete; an implementation using a test platform is also being done. 
 

6.2.2  Declarative Languages and Execution Environment 
3) Java Code Release and Documentation (VT) [complete]. 

Virginia Tech has delivered the GUI source code to BBN.  VT demonstrated this 
code at the SITEX00 experiment.  Periodic updates continued for SITEX01 and 
SITEX02 experiments. 
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6.3 Deliverables for FY01 

6.3.1   Distribution and Aggregation 

4) PDA Experiment Code Release, Documentation, Report (UCLA)  
[complete]. 
UCLA has completed an implementation of sensor data distribution protocols on a 
network of iPAQ PDAs using 802.11b radios, and serial magnetometers. Another 
implementation using prototype radios based on RFM transceivers was done.  

6.3.2  Declarative Languages and Execution Environment 
Integration Code Release, Documentation, Report (VT) [Complete]. 

Virginia Tech released new versions of the GUI to BBN’s specifications for use in the 
SITEX02 experiment at Twentynine Palms as well as for the 2002 demonstration at 
the PI meeting.  This has been tested with the UMD gateway simulator and 
integration with other pieces of the processing chain continues. 

6.3.3  Platforms 
5) Integrated Platform Selection Report (ISI) [Complete]. 

The SensIT community has specified the Sensoria 2.0 platform.  The DSN team is 
using this platform for experiments where appropriate and relying on IPAQ PDAs for 
secondary experiments. 

 
6) GPS Experiment Report (ISI) [Complete]. 

Results are included in the DSN final report. 
 

6.4 Deliverables for FY02 

6.4.1   Distribution and Aggregation 
1) Integration Code Release, Documentation, and Report (UCLA) [Complete]. 

UCLA has released a snapshot of the mobile sensor script framework, operational on 
iPaqs and Sensoria WINS nodes, via SourceForge. 

6.4.2  Platforms 
2) Integrated GPS experiment (ISI) [Complete]. 

The final integrated experiment was performed in conjunction with Cornell and BAE 
SYSTEMS (Austin) in November 2002. 

 
 

                                                                 31 



7 PERSONNEL 

7.1 USC Information Sciences Institute Personnel 
• 

• 

• 

• 

• 

• 

• 

• 

Brian Schott Project Leader, PI 

Robert Parker Director, ISI-E 
Joe Czarnaski Researcher 

Doe-Wan Kim Researcher 

Bruce Parham Engineer 

Ron Riley Researcher 

Jack Wills  Researcher 

Carl Worth Researcher 

7.2 UCLA Personnel 
• 

• 

• 

• 

• 

• 

• 

• 

Mani Srivastava Associate Professor, Co-I 

Athanassios Boulis PhD Student 

Gautam Kulkarni PhD Student 

Sung Park Graduate Student 

Andreas Savvides PhD Student 

Curt Schurgers PhD Student 

Vlassis Tsiatsis PhD Student 

Scott Zimbeck Graduate Student 

7.3 Virginia Tech Personnel 
• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

Mark Jones  Associate Professor, Co-I 

Peter Athanas Assistant Professor, Co-I 

Arya Abraham Graduate Research Assistant 

Gary Friedman Undergraduate Research Assistant  

Dennis Goetz Undergraduate Research Assistant 

Anup Gupta Graduate Research Assistant 

Christian Laughlin Undergraduate Research Assistant 

Shashank Mehrotra Graduate Research Assistant 

Jonathan Scott Undergraduate Research Assistant 

Manu Sporny Undergraduate Research Assistant 

 

                                                                  32 



8 PUBLICATIONS 

[1] “Dynamic Fine-grained Localization in Ad-hoc Networks of Sensors” by Andreas 
Savvides, Chih-Chieh Han, and Mani Srivastava. UCLA Technical Report, and paper 
submission to Mobicom 2001. 

[2] “On modeling networks of wireless microsensors” by Andreas Savvides, Sung Park, and 
Mani Srivastava. UCLA Technical Report, and paper submitted to Sigmetrics 2001. 

[3] “Tasking Distributed Sensor Networks” Mark Jones, Shashank Mehrotra, and Jae Hong 
Park to Journal of High Performance Computing.  Accepted for publication. 

[4] S. Park, A. Savvides, and M. Srivastava, "Simulating networks of wireless sensors," 
Proceedings of the 2001 Winter Simulation Conference (WSC 2001), December 2001. 

[5] C. Schurgers, and M. Srivastava, "Energy efficient routing in wireless sensor networks," 
Proceedings of MILCOM 2001, October 2001. 

[6] C. Schurgers, G. Kulkarni, and M. Srivastava, "Distributed assignment of encoded MAC 
addresses in wireless sensor networks," Proceedings of  the ACM Symposium on Mobile 
Ad Hoc Networking & Computing (MobiHoc 2001), October 2001. 

[7] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, "Energy-aware wireless 
sensor networks", IEEE Signal Processing (special issue on collaborative signal 
processing), March 2002. 

[8] C. Schurgers, V. Tsiatsis, and M.B. Srivastava, "STEM: Topology management for 
energy efficient sensor networks," IEEE Aerospace Conference, March 2002. 

[9] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M.B. Srivastava, "Optimizing Sensor 
Networks in the Energy-Density-Latency Design Space," IEEE Transactions on Mobile 
Computing, vol. 1, (no. 1), January-March 2002. p. 70-80. 11 pages. [NOTE: This 
inaugural issue appeared late, in June 2002] 

[10] C. Schurgers, G. Kulkarni, and M.B. Srivasatava, "Topology Management for Sensor 
Networks: Exploiting Latency and Density," The Third ACM International Symposium 
on Mobile Ad Hoc Networking and Computing (MOBIHOC 2002), June 2002. 13 pages. 

[11] S. Slijepcevic, V. Tsiatsis, S. Zimbeck, M. Potkonjak, and M.B. Srivastava, "On 
Communication Security in Wireless Ad-Hoc Sensor Networks," The IEEE Eleventh 
International Workshops on Enabling Technologies: Infrastructure for Collaborative 
Enterprises (WETICE-2002): Enterprise Security, June 2002. 6 pages. 

[12] G. Kulkarni, C. Schurgers, and M.B. Srivastava, "Dynamic Link Labels for Energy 
Efficent MAC Headers in Wireless Sensor Networks," Proceedings of the First IEEE 
International Conference on Sensors, June 2002. 6 pages. 

[13] Boulis, and M.B. Srivastava, "A Framework for Efficient and Programmable Sensor 
Networks," Proceedings of the Fifth IEEE Conference on Open Architectures and 
Network Programming (OPENARCH'02), June 2002. 12 pages 

[14] A. Savvides, H. Park and M. B. Srivastava, " The Bits and Flops of the N-Hop 
Multilateration Primitive for Node Localization Problems", Proceedings of the First 

                                                                      33 



ACM International Workshop on Sensor Networks and Applications held in conjunction 
with Mobicom, September 2002. 

[15] A. Savvides and M. B. Srivastava, " A Distributed Computation Platform for Wireless 
Embedded Sensing", Proceedings of ICCD 2002, Freiburg, Germany, September 2002. 

[16] Athanassios Boulis and Mani Srivastava, “Node-level Energy Management for Sensor 
Networks in the Presence of Multiple Applications”, IEEE International Conference on 
Pervasive Computing and Communications (PerCom), March 2003. (Accepted) 

[17] Athanassios Boulis, Chih-Chieh Han, and Mani Srivastava, “Design and Implementation 
of a Framework for Efficient and Programmable Sensor Networks,” ACM MobiSys, 
2003. (Accepted) 

[18] Carl  D. Worth. xstroke: Full-screen Gesture Recognition for X.  In FREENIX Track: 
2003 Annual Technical Conference, pages 187-196. June 2003. 

[19] Carl  D. Worth and Keith Packard. Xr: Cross- device Rendering for Vector Graphics. 
Ottowa Liniux Symposium. July  2003. 

                                                                       34 



9 LIST OF ACRONYMS 

ARL – Army Research Labs • 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

ASK – Amplitude Shift Keying 

CODEC – Encoder / Decoder 

CPU – Central Processing Unit 

DARPA – Defense Advanced Research Projects Agency 

DSP – Digital Signal Processor 

FEC – Forward Error Correction 

FFT – Fast Fourier Transform 

FPGA – Field Programmable Gate Array 

HAL – Hardware Abstraction Layer 

ISI – Information Sciences Institute 

LOB – Line of Bearing 

MAC – Media Access Control 

MIT – Massachusetts Institute of Technology 

OOK – On/Off Keying 

OS – Operating System 

P-A – Power Aware 

PAC/C – Power Aware Computing and Communications 

PCMCIA – Personal Computer Memory Card International Association 

PSK – Phase Shift Keying 

QAM – Quadrature Amplitude Modulation 

RSC – Rockwell Scientific Company (formerly Rockwell Science Center) 

RTOS – Real Time Operating System 

STEM – Sparse Topology and Energy Management 

TDMA – Time Domain Multiple Access 

TI – Texas Instruments 

UCLA – University of California, Los Angeles 

USC – University of Southern California 

VLSI – Very Large Scale Integrated 

 

                                                                           35 



                                                                          36 

10 LIST OF ADDENDA 

[1] “Dynamic Fine-grained Localization in Ad-hoc Networks of Sensors” by Andreas 
Savvides, Chih-Chieh Han, and Mani Srivastava. UCLA Technical Report, and paper 
submission to Mobicom 2001. 

[2] “On modeling networks of wireless microsensors” by Andreas Savvides, Sung Park, and 
Mani Srivastava. UCLA Technical Report, and paper submitted to Sigmetrics 2001. 

[3] “Tasking Distributed Sensor Networks” Mark Jones, Shashank Mehrotra, and Jae Hong 
Park to Journal of High Performance Computing.  Accepted for publication. 

[4] S. Park, A. Savvides, and M. Srivastava, "Simulating networks of wireless sensors," 
Proceedings of the 2001 Winter Simulation Conference (WSC 2001), December 2001. 

[5] C. Schurgers, and M. Srivastava, "Energy efficient routing in wireless sensor networks," 
Proceedings of MILCOM 2001, October 2001. 

[6] C. Schurgers, G. Kulkarni, and M. Srivastava, "Distributed assignment of encoded MAC 
addresses in wireless sensor networks," Proceedings of  the ACM Symposium on Mobile 
Ad Hoc Networking & Computing (MobiHoc 2001), October 2001. 

[7] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava, "Energy-aware wireless 
sensor networks", IEEE Signal Processing (special issue on collaborative signal 
processing), March 2002. 

[8] C. Schurgers, V. Tsiatsis, and M.B. Srivastava, "STEM: Topology management for 
energy efficient sensor networks," IEEE Aerospace Conference, March 2002. 

[9] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M.B. Srivastava, "Optimizing Sensor 
Networks in the Energy-Density-Latency Design Space," IEEE Transactions on Mobile 
Computing, vol. 1, (no. 1), January-March 2002. p. 70-80. 11 pages. [NOTE: This 
inaugural issue appeared late, in June 2002] 

[10] C. Schurgers, G. Kulkarni, and M.B. Srivasatava, "Topology Management for Sensor 
Networks: Exploiting Latency and Density," The Third ACM International Symposium 
on Mobile Ad Hoc Networking and Computing (MOBIHOC 2002), June 2002. 13 pages. 

[11] S. Slijepcevic, V. Tsiatsis, S. Zimbeck, M. Potkonjak, and M.B. Srivastava, "On 
Communication Security in Wireless Ad-Hoc Sensor Networks," The IEEE Eleventh 
International Workshops on Enabling Technologies: Infrastructure for Collaborative 
Enterprises (WETICE-2002): Enterprise Security, June 2002. 6 pages. 

[12] G. Kulkarni, C. Schurgers, and M.B. Srivastava, "Dynamic Link Labels for Energy 
Efficent MAC Headers in Wireless Sensor Networks," Proceedings of the First IEEE 
International Conference on Sensors, June 2002. 6 pages. 

[13] A. Boulis, and M.B. Srivastava, "A Framework for Efficient and Programmable Sensor 
Networks," Proceedings of the Fifth IEEE Conference on Open Architectures and 
Network Programming (OPENARCH'02), June 2002. 12 pages 

[14] A. Savvides, H. Park and M. B. Srivastava, " The Bits and Flops of the N-Hop 
Multilateration Primitive for Node Localization Problems", Proceedings of the First 



                                                                       37 

ACM International Workshop on Sensor Networks and Applications held in conjunction 
with Mobicom, September 2002. 

[15] A. Savvides and M. B. Srivastava, " A Distributed Computation Platform for Wireless 
Embedded Sensing", Proceedings of ICCD 2002, Freiburg, Germany, September 2002. 

[16] Athanassios Boulis, Chih-Chieh Han, and Mani Srivastava, “Design and Implementation 
of a Framework for Efficient and Programmable Sensor Networks,” ACM MobiSys, 
2003. (Accepted) 



Dynamic Fine-Grained Localization in Ad-Hoc Networks of
Sensors

Andreas Savvides, Chih-Chieh Han and Mani B. Strivastava
Networked and Embedded Systems Lab

Department of Electrical Engineering
University of Calfornia, Los Angeles
fasavvide, simonhan, mbsg@ee.ucla.edu

ABSTRACT
The recen t adv ances in radio and em beddedsystem tech-
nologies ha ve enabled the proliferation of wireless micro-
sensor net w orks.Suc h wirelessly connected sensors are re-
leased in many div erse en vironments to perform various mon-
itoring tasks. In many suc h tasks, location aw areness is in-
heren tly one of the most essen tial system parameters. It
is not only needed to report the origins of events, but also
to assist group querying of sensors, routing, and to answer
questions on the netw ork co verage.In this paper we presen t
a no vel approach to the localization of sensors in an ad-
hoc net w ork.We describe a system called AHLoS (Ad-Hoc
Localization System) that enables sensor nodes to discover
their locations using a set distributed iterative algorithms.
The operation of AHLoS is demonstrated with an accuracy
of a few centimeters using our prototype testbed while scal-
abilit y and performance are studied through simulation.

Keywords
location discovery, localization, wireless sensor netw orks

1. INTRODUCTION
1.1 Sensor Networks and Location Discovery
No w ada ys, wireless devices enjoy widespread use in numer-
ous div erse applications including that of sensor netw orks.
The exciting new �eld of wir eless sensor networks breaks
aw ay from the traditional end-to-end communication of voice
and data systems, and introduces a new form of distributed
information exchange. Myriads of tiny embedded devices,
equipped with sensing capabilities, are deplo yed in the en-
vironment and organize themselves in an ad-hoc netw ork.
Information exchange among collaborating sensors becomes
the dominant form of communication, and the netw ork es-
sentially beha vesas a large, distributed computation ma-
chine. Applications featuring such netw ork eddevices are
becoming increasingly prevalen t, ranging from environmen-
tal and natural habitat monitoring, to home netw orking,

medical applications and smart battle�elds. Net w ork ed sen-
sors can signal a machine malfunction to the control cen ter
in a factory , or alternatively w arn about smoke on a remote
forest hill indicating that a dangerous �re is about to start.
Other wireless sensor nodes can be designed to detect the
ground vibrations generated by the silen t footsteps of a cat
burglar and trigger an alarm.

Naturally, the question that immediately follows the actual
detection of events, is: wher e? Where are the abnormal vi-
brations detected, where is the �re, which house is about to
be robbed? T o answer this question, a sensor node needs
to possess knowledge of its physical location in space. Fur-
thermore, in large scale ad-hoc netw orks, knowledge of node
location can assist in routing [5] [6], it can be used to query
nodes o ver a specic geographicalarea or it can be used to
study the coverage properties of a sensor netw ork [31].Addi-
tionally, we envision that location aw areness developed here
will enjoy a wide spectrum of applications. In tactical envi-
ronments, it can be used to track the movements of targets.
In a smart kindergarten [32] it can be used to monitor the
progress of c hildren by trac king their interaction with toys
and with each other ; in hospitals it can keep trac k of equip-
ment, patien ts,doctors and nurses or it can drive con text
aw are services similar to the ones described in [4], [29].

The incorporation of location aw arenessin wireless sensor
netw orks is far from a trivial task. Since the netw ork can
consist of a large number of nodes that are deployed in an
ad-hoc fashion, the exact node locations are not known a-
priori. Unfortunately, the straigh tforw ard solution of adding
GPS to all the nodes in the netw ork is not practical since:

� GPS cannot work indoors or in the presence of dense
vegetation, foliage or other obstacles that bloc k the
line-of-sigh t from the GPS satellites.

� The pow er consumption of GPS will reduce the bat-
tery life on the sensor nodes thus reducing the e�ective
lifetime of the entire netw ork.

� The production cost factor of GPS can become an issue
when large numbers of nodes are to be produced.

� The size of GPS and its antenna increases the sensor
node form factor. Sensor nodes are required to be
small and inobstrusive.
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To this end, we seek an alternative solution to GPS that
is low cost, rapidly deployable and can operate in many di-
verse environments without requiring extensive infrastruc-
ture support.

Figure 1: WINS Sensor Node from RSC

1.2 Our Work
We propose a new distributed technique that only requires a
limited fraction of the nodes (beacons) to know their exact
location (either through GPS or manual con�guration) dur-
ing deployment and that nevertheless can attain network-
wide �ne-grain location awareness. Our technique, which
we call AHLoS (Ad-Hoc Localization System), relieves the
drawbacks of GPS as it is low cost, it can operate indoors
and does not require expensive infrastructure or pre-planning.
AHLoS enables nodes to dynamically discover their own lo-
cation through a two-phase process, ranging and estimation.
During the ranging phase, each node estimates its distance
from its neighbors. In the estimation phase, nodes with un-
known locations use the ranging information and known bea-
con node locations in their neighborhood to estimate their
positions. Once a node estimates its position it becomes a
beacon and can assist other nodes in estimating their posi-
tions by propagating its own location estimate through the
network. This process iterates to estimate the locations of
as many nodes as possible.

The �rst part of our work examines the ranging challenges.
Since almost all ranging techniques rely on signal propaga-
tion characteristics, they are susceptible to external biases
such as interference, shadowing and multipath e�ects, as
well as environmental variations such as changes in tem-
perature and humidity. These physical e�ects are diÆcult
to predict and depend greatly on the actual environment in
which the system is operated. It is therefore critical to char-
acterize the behavior of di�erent ranging alternatives exper-
imentally in order to determine their usefulness in sensor
networks. To justify our rangining choice we performed a de-
tailed comparison of two promising ranging techniques: one
based on received RF signal strength and the other based on
the Time of Arrival (ToA) of RF and ultrasonic signals. Our
experiments of distance discovery with RF signal strength
were conducted on the WINS wireless sensor nodes [12] (�g-
ure 1) developed by the Rockwell Science Center (RSC). To
perform our evaluation of ToA, we have designed and im-
plemented a testbed of ultrasound-equipped sensor nodes,

called Medusa (from Greek mythology - a monster with
many heads) nodes (�gure 2). To address the variation of
propagation characteristics of ultrasound from place to place
AHLoS estimates the propagation characteristics on the y
in the actual deployment environment. The second part of
our work uses the ranging techniques described above, to
develop a set of distributed localization algorithms. Node
positions are estimated using least squares estimation in an
iterative multilateration process. This ability of AHLoS to
estimate node locations in an ad-hoc setting with a few cen-
timeters accuracy is demonstrated on a testbed comprised
of �rst generation Medusa nodes. Error propagation, sys-
tem scalability and energy consumption are studied through
simulation.

Figure 2: Medusa experimental node

1.3 Paper Organization
This paper is organized as follows: In the next section we
provide some background on localization and we survey the
related work. Section 3 presents the evaluation of our two
candidate ranging methods: Received signal strength and
time of arrival. Section 4 describes the localization algo-
rithms and section 5 is a short study on node and beacon
node placement. In section 6 we discuss our implementation
and experiments. Section 7 discusses the tradeo�s between
centralized and distributed localization and section 8 con-
cludes this paper.

2. BACKGROUND AND RELATED WORK
2.1 Background
The majority of existing location discovery approaches con-
sist of two basic phases: (1) distance (or angle) estimation
and (2) distance (or angle) combining. The most popular
methods for estimating the distance between two nodes are:

� Received Signal Strength Indicator (RSSI) tech-
niques measure the power of the signal at the receiver.
Based on the known transmit power, the e�ective prop-
agation loss can be calculated. Theoretical and empiri-
cal models are used to translate this loss into a distance
estimate. This method has been used mainly for RF
signals.
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� Time based methods (ToA,TDoA) record the time-
of-arrival (ToA) or time-di�erence-of-arrival (TDoA).
The propagation time can be directly translated into
distance, based on the known signal propagation speed.
These methods can be applied to many di�erent sig-
nals, such as RF, acoustic, infrared and ultrasound.

� Angle -of -Arrival (AoA) systems estimate the an-
gle at which signals are received and use simple geo-
metric relationships to calculate node positions.

A detailed discussion of these methods can be found in [20].
For the combining phase, the most popular alternatives are:

� The most basic and intuitive method is called hyper-
bolic tri-lateration. It locates a node by calculating
the intersection of 3 circles (�gure 3a).

� Triangulation is used when the direction of the node
instead of the distance is estimated, as in AoA systems.
The node positions are calculated in this case by using
the trigonometry laws of sines and cosines (�gure 3b).

� The third method is Maximum Likelihood (ML) esti-
mation (�gure 3c). It estimates the position of a node
by minimizing the di�erences between the measured
distances and estimated distances. We have chosen
this technique as the basis of AHLoS for obtaining the
Minimum Mean Square Estimate(MMSE) from a set
of noisy distance measurements.
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Figure 3: Localization Basics a) Hyperbolic tri-
lateration, b) Triangulation, c) ML Multilateration

2.2 Related Work
In the past few decades, numerous localization systems have
been developed and deployed. In the 1970s, the automatic
vehicle location (AVL) systems were deployed to determine
the position of police cars and military ground transporta-
tion vehicles. A set of stationary base stations acting as
observation points use ToA and TDoA techniques to gen-
erate distance estimates. The vehicle position is then de-
rived through multilaterations, using Taylor Series Expan-
sion to transform a non-linear least squares problem to a

linear [7][8]. Similar approaches can also be found in mili-
tary applications for determining the position of airplanes.

In 1993, the well-known Global Positioning System (GPS)
[34] system was deployed, which is based on the NAVSTAR
satellite constellation (24 satellites). LORAN [28] operates
in a similar way to GPS but uses ground based beacons
instead of sattelites. In 1996, the U.S Federal Communica-
tions Commission (FCC) required that all wireless service
providers give location information to the Emergency 911
services. Cellular base stations are used to locate mobile
telephone users within a cell [9][10]. Distance estimates are
generated with TDoA. The base station transmits a bea-
con and the handset reects the signal back to the base
station. Location information is again calculated by mul-
tilateration using least squares methods. By October 2001,
FCC requires a 125-meter root mean square(RMS) accuracy
in 67% of the time and by October 2006 a 300-meter RMS
accuracy for 95% of the times is required.

Recently, there has been an increasing interest for indoor lo-
calization systems. The RADAR system [1] can track the lo-
cation of users within a building. To calculate user locations
the RADAR system uses RF signal strength measurements
from three �xed base stations in two phases. First, a com-
prehensive set of received signal strength measurements is
obtained in an o�ine phase to build a set of signal strength
maps. The second phase is an online phase during which
the location of users can be obtained by observing the re-
ceived signal strength from the user stations and matching
that with the readings from the o�ine phase. This process,
eliminates multipath and shadowing e�ects at the cost of
considerable preplanning e�ort.

The Cricket location support system [4] is also designed for
indoor localization. It provides support for context aware
applications and is low cost. Unlike the systems discussed so
far, it uses ultrasound instead of RF signals. Fixed beacons
inside the building distribute geographic information to the
listener nodes. Cricket can achieve a granularity of 4 by 4
feet. Room level granularity can be obtained by the active
badge [22] system, which uses infrared signals. The next
development in this area on indoor localization is BAT [29]
[30]. A BAT node carries an ultrasound transmitter whose
signals are picked up by an array of receivers mounted on
the ceiling. The location of a BAT can be calculated via
multilateration with a few centimeters of accuracy. An RF
base station coordinates the ultrasound transmissions such
that interference from nearby transmitters is avoided. This
system relies heavily on a centralized infrastructure.

In the ad-hoc domain, fewer localization systems exist. An
RF based proximity method is presented in [21], in which
the location of a node is given as a centroid. This centroid is
generated by counting the beacon signals transmitted by a
set of beacons pre-positioned in a mesh pattern. A di�erent
approach is taken in the Picoradio project at UC Berkeley.
It provides a geolocation scheme for an indoor environment
[11], based on RF received signal strength measurements
and pre-calculated signal strength maps.

Our system, AHLoS, also belongs to the ad-hoc class. Al-
though uses RF and ultrasound transmissions similar to the
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Cricket and BAT Systems, it also has some key di�erences.
AHLoS does not rely on a preinstalled infrastructure. In-
stead, it is a fully ad-hoc system with distributed localiza-
tion algorithms running at every node. This results in a
exible system that only requires a small initial fraction of
the nodes to be aware of their locations. Furthermore, it
enables nodes to estimate their locations even if they are
not within range with the beacon nodes. From a power
awareness perspective, it also ensures that all nodes play an
equal role in the location discovery process resulting in an
even distribution of power consumption. The resulting lo-
calization system provides �ne-grained localization with an
accuracy of a few centimeters, similar to the BAT system
without requiring infrastructure support. Finally, unlike all
the systems discussed so far, AHLoS provisions for dynamic
on-line estimation of the ultrasound propagation character-
istics. This renders our approach extremely robust even in
the presence of changing environments.

3. RESEARCH METHODOLOGY
As a �rst step in our study, we characterize the ranging ca-
pabilities of our two target technologies: Received RF signal
strength using the WINS nodes and RF and ultrasound ToA
using the Medusa nodes.

3.1 Ranging Characterization
3.1.1 Received Signal Strength
The signal strength method uses the relationship of RF sig-
nal attenuation as a function of distance. From this rela-
tionship a mathematical propagation model can be derived.
From detailed studies of the RF signal propagation charac-
teristics[18], it is well known that the propagation charac-
teristics of radio signals can vary with changes in the sur-
rounding environment (weather changes, urban / rural and
indoor / outdoor settings). To evaluate signal strength mea-
surements we conducted some experiments with the target
system of interest, the WINS sensor nodes [12]. The WINS
nodes have a 200MHz StrongARM 1100 processor, 1MB
Flash, 128KB RAM and the Hummingbird digital cordless
telephony (DECT) radio chipset that can transmit at 15
distinct power levels ranging from -9.3 to 15.6 dBm (0.12 to
36.31 mW). The WINS nodes carry an omni-directional an-
tenna hence the radio signal is uniformly transmitted with
the same power in all directions around the node. As part
of the radio architecture, the WINS nodes provide a pair of
RSSI (Received Signal Strength Indicators) resisters. RSSI
registers are a standard feature in many wireless network
cards [23]. Using these registers we conducted a set of mea-
surements in order to derive an appropriate model for rang-
ing. We performed measurements in several di�erent set-
tings (inside our lab, in the parking lot and between build-
ings). Unfortunately, a consistent model of the signal atten-
uation as a function of distance could not be obtained. This
is mainly attributed to multipath, fading and shadowing ef-
fects. Another source of inconsistency is the great variation
of RSSI associated with the altitude of the radio antenna.
For instance, at ground level, the radio range at the max-
imum transmit power level the usable radio transmission
range is around 30m whereas when the node is placed at
a height of 1.5m the usable transmission range increases to
around 100m. Because of these inconsistencies, we were only
able to derive a model for an idealized setting; in a football

�eld with all the nodes positioned at ground level. For this
setup we developed a model based on the RSSI register read-
ings at di�erent transmission power levels and di�erent node
separations.

A model (equation 1) is derived by obtaining a least square
�t for each power level. PRSSI is the RSSI register reading
and r is the distance between two nodes. Parameters X and
n are constants that can be derived as functions of distance
r for each power level. Averaged measurements and the
corresponding derived models are shown in �gure 4. Table
1 gives the X and n parameters for each case.

PRSSI =
X
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Figure 4: Radio Signal Strength Radio Characteri-
zation using WINS nodes(power levels P=7,13)

Table 1: RSSI Ranging Model Parameters for WINS
nodes

Power Level dBm mW X n

7 2.5 1.78 21778.338 0.178186
13 14.4 27.54 25753.63 0.198641

With all the nodes placed on a at plane, signal strength
ranging can provide a distance estimate with an accuracy
of a few meters. In all other cases, this experiment has
shown that the use of radio signal strength can be very
unpredictable. Another problem with the received signal
strength approach is that radios in sensor nodes are low cost
ones without precise well-calibrated components, such as the
DECT radios in Rockwell's nodes or the emerging Bluetooth
radios. As a result, it is not unusual for di�erent nodes to
exhibit signi�cant variation in actual transmit power for the
same transmit power level, or in the RSSI measured for the
same actual received signal strength. Di�erences of several
dBs are often seen. While these variations are acceptable for
using transmit power adaptation and RSSI measurements
for link layer protocols, they do not provide the accuracy
required for �ne-grained localization. A potential solution
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would be to calibrate each node against a reference node
prior to deployment, and store gain factors in non-volatile
storage so that the run-time RSSI measurements may be
normalized to a common scale.

3.1.2 ToA using RF and Ultrasound
To characterize ToA ranging on theMedusa nodes we mea-
sure the time di�erence between two simultaneously trans-
mitted radio and ultrasound signals at the receiver (�gure
5).

Transmitter Receiver

Distance = (T2-T1) x S

T1

T2

Radio Signal

Ultrasound Pulse

Distance

Figure 5: Distance measurement using ultrasound
and radio signals

The ultrasound range on the Medusa nodes is about 3 me-
ters (approximately 11-12 feet). We found this to be a conve-
nient range for performing multihop experiments in our lab
but we note that longer ranges are also possible at higher
cost and power premiums. The Polaroid 6500 ultrasonic
ranging module [17] for example has a range of more than
10 meters (the second generation ofMedusa nodes will have
a 10-15 meter range). We characterize ToA ranging by us-
ing two Medusa nodes placed on the oor of our lab. We
recorded the time di�erence of arrival at 25-centimeter in-
tervals. The results of our measurements are shown in �gure
6. The x axis represents distance in centimeters and the y
axis represent the microcontroller timer counter value.
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Figure 6: Ulrasound Ranging Characterization

The speed of sound is characterized in terms of the micro-
controller timer ticks. To estimate the speed to sound as
a function of microcontroller time, we perform a best line
�t using linear regression (equation 2). s is the speed of
sound in timer ticks, d is the estimated distance between 2

nodes and k is a constant. For this model s = 0:4485 and
k = 21:485831.

t = sd+ k (2)

This ranging system can provide an accuracy of 2 centime-
ters for node separations under 3 meters. Like the RF sig-
nals, ultrasound also su�ers from multipath e�ects. Fortu-
nately, they are easier to detect. ToA measurement use the
�rst pulse received ensuring that the shortest path(straight
line) reading is observed. Reected pulses from nodes that
do not have direct line of sight are �ltered out using statis-
tical techniques similar to the ones used in [30].

3.2 Signal Strength vs. ToA ranging
On comparing the two ranging alternatives, we found that
ToA using RF and ultrasound is more reliable than received
signal strength. While received signal strength is greatly af-
fected by amplitude variations of the received signal, ToA
ranging only depends on the time di�erence, a much more
robust metric. Based on our characterization results we
chose ToA as the primary ranging method for AHLoS. Simi-
lar to RF signals, the ultrasound signal propagation charac-
teristics may change with variations in the surrounding en-
vironment. To minimize these e�ects, AHLoS dynamically
estimates the signal propagation characteristics every time
suÆcient information is available. This ensures that AHLoS
will operate in many diverse environments without prior cal-
ibration. If the sensor network is deployed over a large �eld,
the signal propagation characteristics may vary from region
to region across the �eld. The calculation of the ultrasound
propagation characteristics in the locality of each node en-
sures better location estimates accuracy. Table 2 summa-
rizes the comparison between signal strength and ultrasound
ranging. One possible solution we are considering for our
future work is to combine received signal strength and ToA
methods. Since the received signal strength method has
the same e�ective range as the radio communication range,
it can be used to provide a proximity indication in places
where the network connectivity is very sparse for ToA local-
ization to take place. The ultrasound approach will provide
�ne grained localization in denser parts of the networks. For
this con�guration, we plan to have the Medusa boards act
as location coprocessors for the WINS nodes.

4. LOCALIZATION ALGORITHMS
Given a ranging technology that estimates node separation
we now describe our localization algorithms. These algo-
rithms operate on an ad-hoc network of sensor nodes where
a small percentage of the nodes are aware of their positions
either through manual con�guration or using GPS. We re-
fer to the nodes with known positions as beacon nodes and
those with unknown positions as unknown nodes. Our goal
is to estimate the positions of as many unknown nodes as
possible in a fully distributed fashion. The proposed loca-
tion discovery algorithms follow an iterative process. After
the sensor network is deployed, the beacon nodes broadcast
their locations to their neighbors. Neighboring unknown
nodes measure their separation from their neighbors and
use the broadcasted beacon positions to estimate their own
positions. Once an unknown node estimates its position,
it becomes a beacon and broadcasts its estimated position
to other nearby unknown nodes, enabling them to estimate
their positions. This process repeats until all the unknown
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Table 2: A comparison of RSSI and ultrasound ranging
Property RSSI Ultrasound

Range same as radio communication range 3 meters (up to a few 10s of meters)
Accuracy O(m), 2-4m for WINS O(cm), 2cm for Medusa
Measurement Reliability hard to predict, multipath and

shadowing
multipath mostly predictable,time
is a more robust metric

Hardware Requirements RF signal strength must be avail-
able to CPU

ultrasound transducers and ampli-
�er circuitry

Additional Power Requirements none tx and rx signal ampli�cation
Challenges large variances in RSSI readings,

multipath, shadowing, fading ef-
fects

interference, obstacles, multipath

nodes that satisfy the requirements for multilateration ob-
tain an estimate of their position. This process is de�ned
as iterative multilateration which uses atomic multilatera-
tion as its main primitive. In the following subsections we
provide the details of atomic and iterative multilateration.
Furthermore, we describe collaborative multilateration as an
additional enhanced primitive for iterative multilateration
and we provide some suggestions for further optimizations.

4.1 Atomic Multilateration
Atomic multilateration makes up the basic case where an
unknown node can estimate its location if it is within range
of at least three beacons. If three or more beacons are avail-
able, the node also estimates the ultrasound speed of prop-
agation for its locality. Figure 7a illustrates a topology for
which atomic multilateration can be applied.

The error of the measured distance between an unknown
node and its ith beacon can be expressed as the di�erence
between the measured distance and the estimated Euclidean
distance (equation 3). x0 and y0 are the estimated coordi-
nates for the unknown node 0 for i = 1; 2; 3:::N , where N is
the total number of beacons, and ti0 is the time it takes for
an ultrasound signal to propagate from beacon i to node 0,
and s is the estimated ultrasound propagation speed.
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Figure 7: Multilateration examples

fi(x0; y0; s) = sti0 �
p
(xi � x0)2 + (yi � y0)2 (3)

Given that an adequate number of beacon nodes are avail-
able, a Maximum Likelihood estimate of the node's position
can be obtained by taking the minimum mean square esti-
mate (MMSE) of a system of fi(x0; y0; s) equations (equa-
tion 4). Term � represents the weight applied to each equa-
tion. For simplicity we assume that � = 1.

F (x0; y0; s) =
NX
i=1

�
2
f(i)2 (4)

If a node has three or more beacons a set of three equa-
tions of the form of (3) can be constructed yield an over-
determined system with a unique solution for the position
of the unknown node 0. If four or more beacons are avail-
able, the ultrasound propagation speed s can also be esti-
mated. The resulting system of equations can be linearized
by setting fi(x0; y0; s) = equation 3, squaring and rearrang-
ing terms to obtain equation 5.

�x2i � y
2
i =

(x20 + y
2
0) + x0(�2xi) + y0(�2yi)� s

2
t
2
i0

(5)

for k such equations we can eliminate the (x20 + y20) terms
by subtracting the kth equation from the rest.

�x2i � y
2
i + x

2
k + y

2
k = 2xo(xk � xi)

+2y0(yk � yi) + s
2(tik

2 � ti0
2)

(6)

this system of equations has the form y = bX and can be
solved using the matrix solution for MMSE [25] given by
b = (XTX)�1XT y where
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X =

2
6664

2(xk � x1) 2(yk � y1) tk0
2 � tk1

2

2(xk � x2) 2(yk � y2) tk0
2 � tk2

2

...
...

...
2(xk � xk�1) 2(yk � yk�1) tk0

2 � tk(k�1)
2)

3
7775

y =

2
6664
�x21 � y21 + x2k + y2k
�x22 � y22 + x2k + y2k

...
x2k�1 � y2k�1 + x2k + y2k

3
7775

and

b =

2
4 x0

y0
s2

3
5

Based on this solution we de�ne the following requirement
for atomic multilateration.

Requirement 1. Atomic multilateration can take place
if the unknown node is within one hop distance from at least
three beacon nodes. The node may also estimate the ultra-
sound propagation speed if four or more beacons are avail-
able.

Although requirement 1 is necessary for atomic multilater-
ation, it is not always suÆcient. In the special case when
beacons are in a straight line, a position estimate cannot be
obtained by atomic multilateration. If this occurs, the node
will attempt to estimate its position using collaborative mul-
tilateration. We also note that atomic multilateration can
be performed in 3-D without requiring an additional beacon
[33].

4.2 Iterative Multilateration
The iterative multilateration algorithm uses atomic multilat-
eration as its main primitive to estimate node locations in
an ad-hoc network. This algorithm is fully distributed and
can run on each individual node in the network. Alterna-
tively, the algorithm can also run at a single central node or
a set of cluster-heads, if the network is cluster based. Fig-
ure 8 illustrates how iterative multilateration would execute
from a central node that has global knowledge of the net-
work. The algorithm operates on a graphG which represents
the network connectivity. The weights of the graph edges
denote the separation between two adjacent nodes. The al-
gorithm starts by estimating the position of the unknown
node with the maximum number of beacons using atomic
multilateration. Since at a central location all the the entire
network topology is known so we start from the unknown
node with the maximum number of beacons to obtain better
accuracy and faster convergence (in the distributed version
an unknown will perform a multilateration as soon as in-
formation from three beacons). When an unknown node
estimates its location, it becomes a beacon. This process
repeats until the positions of all the nodes that eventually
can have three or more beacons are estimated.

boolean iterativeMultilateration (G)
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

while BeaconCount � 3
setBeacon (MaxBeaconNode)
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

Figure 8: Iterative Multilateration Algorithm as it
executes on a centralized node

A drawback of iterative multilateration is the error accu-
mulation that results from the use of unknown nodes that
estimate their positions as beacons. Fortunately, this error
accumulation is not very high because of the high precision
of our ranging method. Figure 9 shows the position errors
in a simulated network of 50 Medusa nodes when 10% of
the nodes are initially con�gured as beacons. The nodes are
deployed on a square grid of side 15 meters. The simulation
considers two types of errors: 1) ranging errors and 2) bea-
con placement errors. In both cases a 20mm white Gaussian
error is used. In both cases the estimated node positions are
within 20 cm from the actual positions.
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Figure 9: Iterative Multilateration Accuracy in a
network of 50 nodes and 10% beacons

4.3 Collaborative Multilateration
In an ad-hoc deployment with random distribution of bea-
cons, it is highly possible that at some nodes, the condi-
tions for atomic multilateration will not be met; i.e. an
unknown node may never have three neighboring beacon
nodes therefore it will not be able to estimate its position
using atomic multilateration. When this occurs, a node may
attempt to estimate its position by considering use of loca-
tion information over multiple hops in a process we refer
to as collaborative multilateration. If suÆcient information
is available to form an over-determined system of equations
with a unique solution set, a node can estimate its position
and the position of one or more additional unknown nodes
by solving a set of simultaneous quadratic equations. Fig-
ure 7b illustrates one of the most basic topologies for which
collaborative multilateration can be applied. Nodes 2 and 4
are unknown nodes, while nodes 1,3,5,6 are beacon nodes.
Since both nodes 2 and 4 have three neighbors (degree d = 3)
and all the other nodes are beacons, a unique position es-
timate for nodes 2 and 4 can be computed. More formally,
collaborative multilateration can be stated as follows: Con-
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sider the ad-hoc network to be a connected undirected graph
G = (N;E) consisting of jN j = n nodes and a set E of n�1
or more edges. The beacon nodes are denoted by a set B
where B � N and the set of unknown nodes is denoted by
U where U � G. Our goal is to solve for

xu; yu 8u � U by minimizing

f(xu; yu) = Diu �
p
(xi � xu)2 + (yi � yu)2 (7)

for all participating node pairs i; u where i � B or i � U
and u � U . Subject to:
xi; yi are known if i � B, and every node pair i; u is a
participating pair. Participating nodes and participating
pair are de�ned as follows:

Definition 1. A node is a participating node if it is ei-
ther a beacon or if it is an unknown with at least three par-
ticipating neighbors.

In �gure 7b if collaborative multilateration starts at node
2, node 2 must have at least three participating neighbors.
Nodes 1 and 3 are beacons therefore they are participating.
Node 4 is unknown but has two beacons: nodes 5 and 6.
Node 4 is also connected to node 2 thus making both of
them participating nodes.

Definition 2. A participating node pair is a beacon-unknown
or unknown-unknown pair of connected nodes where all un-
knowns are participating.

In this formulation, the nodes participating in collabora-
tive multilateration make up a subgraph of G, for which an
equation of the form of 7 can be written for each edge E
that connects a pair of participating nodes. To ensure a
unique solution, all nodes considered must be participating.
In �gure 7b for example, we have �ve edges thus a set of
�ve equations can be obtained. In some cases other cases ,
we may have a well-determined system of n equations and
n unknowns such as in the case shown �gure 7c. We can
easily observe however, that node X can have two possible
positions that would satisfy this system therefore the solu-
tion is not unique and node X is not a participating node. If
the above conditions are met, the resulting system of non-
linear equations can be solved with optimization methods
such as gradient descend [26] and simulated annealing [27].

The algorithm in �gure 10 provides a basic example of how
a node determines whether it can initiate collaborative mul-
tilateration. The parameter node denotes the node id from
where the search for a collaborative multilateration begins.
The second parameter callerId holds the node id of the node
that calls the particular instance of the function. isInitia-
tor is a boolean variable that is set to true if the node was
the initiator of the collaborative multilateration process and
false otherwise. This is used to set the limit ag that drives
the recursion.

boolean isCollaborative (node, callerId, isInitiator)
if isInitiator==true limit  3
else limit  2
count  beaconCount(node)
if count � limit return true
for each unknown neighbor i not previously visited
if isCollaborative (i, node, false) count++
if count == limit return true

return false

Figure 10: Algorithm for checking the feasibility for
collaborative multilateration

Collaborative multilateration can be used to assist iterative
multilateration in places of the network where the beacon
density is low and the requirement for atomic multilateration
is not satis�ed. Figure 11 illustrates how iterative multi-
lateration would call collaborative multilateration when the
requirement for atomic multilateration is not met.

boolean iterativeMultilateration (G)
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

while BeaconCount � 3
setBeacon (MaxBeaconNode)
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

while isCollaborative (MaxBeaconNode, -1, true)
set all nodes in collaborative set as beacons
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

while BeaconCount � 3
setBeacon (MaxBeaconNode)
(MaxBeaconNode, BeaconCount)  unknown
node with most beacons

Figure 11: Enhanced Iterative Multilateration

Collaborative multilateration can help in situations where
the percentage of beacons is low. This e�ect is shown in
�gure 12. This scenario considers a sensor �eld of 100 by
100 and a sensing range of 10 and two network sizes of 200
and 300 nodes. As shown in the �gure, if the percentage of
beacons is small, the number of node locations that can be
resolved is substantially increased with collaborative mul-
tilateration. This result also shows how network density is
related to the localization process. In the 300 node network,
more node locations can be estimated than in the 200 node
network with the same percentage of beacons. This is due
to the higher degree of connectivity. The e�ects of node and
beacon placement on the localization process is studied in
more detail in section 5.

4.4 Further Optimizations
The accuracy of the estimated locations in the multilater-
ation algorithms described in this section may be further
improved with two additional optimizations. First, error
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Figure 12: E�ect of collaborative multilateration top, 300 nodes, bottom 200 nodes

propagation can be reduced by using weighted multilatera-
tion. In this scheme, beacons with higher certainty about
their location are weighted more than beacons with lower
certainty during a multilateration. As new nodes become
beacons, the certainty of their estimated location can also
be computed and used as a weight in future multilaterations.
Additionally, by applying collaborative multilateration over
a wider scope, the accumulated error can be reduced. The
solution methodology and further evaluation of these opti-
mizations are part of our future work and will be the subject
of a future paper.

5. NODE AND BEACON PLACEMENT
The success of the location discovery algorithm depends on
network connectivity and beacon placement. In this section,
we conduct a brief probabilistic analysis to determine how
the connectivity requirements can be met when nodes are
uniformly deployed in a �eld. Based on these results, we
later perform a statistical analysis to get an indication on
the percentage of beacons required. When considering node
deployment, the main metric of interest is the probability
with which any node in the network has a degree of three or
more, assuming that sensor nodes are uniformly distributed
over the sensor �eld. In a network of N nodes deployed in a
square �eld of side L, the probability P (d) of a node having
degree d is given by the binomial distribution in equation 8
and the probability PR being in transmission range.

P (d) = P
d

R:(1� PR)
N�d�1

:

 
N � 1

d

!
(8)

PR =
�R2

L2
(9)

For large values of N tending to in�nity, the above bino-
mial distribution converges to a Poisson distribution. When
taking into account that � = N:PR we get equation 10, the

probability of a node have degree of three or more can be
calculated. Also, an indication of the number of nodes re-
quired per unit area can be calculated in terms of �. Table
3 shows the number of nodes required to cover a square �eld
of size L = 100 and range R = 10 as well as the probabil-
ity for a node to have degree greater than three or four for
di�erent values of �. These probabilities are obtained from
equation 11.

P (d) =
�d

d!
:e
�� (10)

P (d � n) = 1�
n�1X
i=0

P (i) (11)

Table 3: Probability of node degree for di�erent �
values

� P(d � 3) P(d � 4) nodes/10,000m2

2 0.323324 0.142877 39
4 0.761897 0.56653 78
6 0.938031 0.848796 117
8 0.986246 0.95762 157
10 0.997231 0.989664 196
12 0.999478 0.997708 235
14 0.999906 0.999526 274
16 0.999984 0.999907 314
18 0.999997 0.999982 353
20 1 0.999997 392

The connectivity results in �gure 13 show the probabilities of
a node having 0,1,2 or 3 and more neighbors. In addition to
node connectivity, we determine percentage of initial bea-
con nodes required for the convergence of the localization
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Figure 13: Connectivity result for a 100 x 100 �eld
and sensor range 10

algorithm by statistical analysis. Using the same network
setup as before, we report the percentage of nodes that es-
timate their locations while varying the percentage of nodes
and beacons. The results in �gure 14 are the averages over
100 simulations. The �gure shows the percentage of bea-
cons required to complete the iterative multilateration pro-
cess using only atomic multilaterations. We note that the
percentage of required beacons decreases as network den-
sity increases. Also as the network density increases, the
transitions in the required number of beacons become much
sharper since the addition of a few more beacon nodes rein-
forces the progress of the iterative multilateration algorithm.
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Figure 14: Beacon Requirements for di�erent node
densities

6. IMPLEMENTATION AND EXPERIMEN-
TATION

6.1 Medusa Node Architecture
TheMedusa node design (�gure 2) is based on the AVR 8535
processor [13] which carries 8KB of ash memory, 512 bytes
SRAM and 512 bytes of EEPROM memory. The radio we
use is the DR3000 radio module from RF Monolithics[14].
This radio supports two data rates (2.4 and 19.2 kbps) and
two modulation schemes (ASK and OOK). The ultrasound

circuitry consists of six (60 degree detect angle) pairs of
40KHz ultrasonic transducers arranged in a hexagonal pat-
tern at the center of the board (note that for experimental
purposes the Medusa node in �gure 2 has 8 transducers).
Each ultrasound transceiver is supported by a pair of solid
core wires at an approximate height of 15 cm above the
printed circuit board. We found this very convenient setup
for experimentation since it allows the transceivers to be ro-
tated in di�erent directions. The �rst generation board is
3" x 4" and it is powered by a 9V battery. The Medusa
�rmware is based on an event driven �rmware implementa-
tion suggested in [15]. The radio communication protocols
use a variable size framing scheme, 4-6 bit encoding [16]
and 16 bit CRC. The code for ranging is integrated in the
ad-hoc routing protocol described in the next subsection.

6.2 Location Information Dissemination and
Routing

In our experimental setup all measurements from the nodes
are forwarded to a PC basestation. To route messages to
the base station, we implemented a lightweight version of
the DSDV [19] routing algorithm, which we refer to as DS-
DVlite. Instead of maintaining a routing table with the
next hop information to every node, DSDVlite only main-
tains a short routing table that holds next hop information
for the shortest route to gateway. Furthermore, this algo-
rithm drives the localization process by carrying the location
information of beacons, and by ensuring that the received ul-
trasound beacon signals originate from the same source node
as the radio signals. The ultrasound beacon signal transmis-
sion begins right after the transmission of the start symbol
for each routing packet. After this, the transmission of data
and ultrasound signals proceed simultaneously. By ensuring
that the duration of the data transmission is longer than the
ultrasound transmission, the receiver can di�erentiate be-
tween erroneous ultrasound transmissions from other nodes.
If the data packet is not correctly received because of a col-
lision with another transmission, it also implies a collision of
ultrasound signals hence the ultrasound time measurement
is discarded.

Figure 15: 9 node scenario
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6.3 Experimental Setup
Our experimental testbed consists of 9Medusa nodes and a
Pentium II 300MHz PC. One node is con�gured as a gateway
and it is attached to the PC through the serial port. Some
of the nodes are pre-programmed with their locations and
they act as beacons. All the nodes perform ranging and they
transmit all the ranging information to the PC that runs
the localization algorithms and displays the node positions
on a sensor visualization tool. The node positions on the
sensor visualization tool are updated at 5-second intervals.
Figures 16 and 15 show some snapshots of node locations.
The beacons are shown as black dots, the unknown nodes
are white circles and the node position estimates are shown
as gray dots. In all of our experiments all the node position
estimates for each unknown node always fall within the 3"
x 4" surface area of the Medusa boards.

Figure 16: 5 node scenario

6.4 Power Characterization
In the previous subsection we veri�ed the correct operation
of our localization system. Our experimental setup will pro-
vide a reasonable solution for a small network but as the
network scales, the traÆc to the central gateway node will
increase substantially. Before we can evaluate the trade-
o�s between estimating locations at the nodes and estimat-
ing locations at a central node we �rst characterize power
consumption of the Medusa nodes at di�erent operational
modes. Using an HP 1660 Logic Analyzer, a bench power
supply and a high precision resistor we characterized the
RFM radio and the AVR microcontroller on the Medusa
nodes.
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Figure 17: Power and Energy Relationships and
Measurement Setup

The measurement setup and power/energy relationships are

shown in �gure 17. The power consumption for di�erent
modes of the AVR microcontroller are shown in table 4.
The power consumption for the di�erent modes of the RFM
radio are shown in �gure 18 and table 5.

Table 4: AVR 8535 Power Characterization
AVR Mode Current Power

Active 2.9mA 8.7mW
Sleep 1.9mA 5.9mW

Power Down 1�A 3�W
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Figure 18: RFM Radio power consumption at dif-
ferent operational modes

7. TRADEOFFS BETWEEN CENTRALIZED
AND DISTRIBUTED SCHEMES

One important aspect that needs to be determined is whether
the location estimation should be done in a centralized or
distributed fashion. In the former case, all the ranging mea-
surements and beacon locations are collected to a central
base station where the computation takes place and the re-
sults are forwarded back to the nodes. In the latter, each
node estimates its own location when the requirements for
atomic multilateration are met. For the AHLoS system, we
advocate that distributed computation would be a better
choice since a centralized approach has several drawbacks.
First, to forward the location information to a central node,
a route to the central node must be known. This implies the
use of a routing protocol other than location based routing
and also incurs some additional communication cost which
is also a�ected by the eÆciency of the existing routing and
media access control protocols. Second, a centralized ap-
proach, creates a time synchronization problem. Whenever
there is a change in the network topology the node's knowl-
edge of location will not instantaneously updated. To cor-
rectly keep track of events, the central node will need to
cache node locations to ensure consistency of event reports
in space and time. Third, the placement of the central node
implies some preplanning to ensure that the node is easily
accessible by other nodes. Also, because of the large volume
of traÆc to and from the central node, the battery lifetime
of the nodes around the central node will be seriously im-
pacted. Fourth, the robustness of the system su�ers. If
the routes to the central node are broken, the nodes will
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Table 5: RFM Power Characterization
Mode Power

Level
OOK Modulation ASK Modulation

2.4Kbps 19.2Kbps 2.4Kbps 19.2Kbps
mW mA mW mA mW mA mW mA mW

Tx 0.7368 4.95 14.88 5.22 15.67 5.63 16.85 5.95 17.76
Tx 0.5506 4.63 13.96 4.86 14.62 5.27 15.80 5.63 16.85
Tx 0.3972 4.22 12.76 4.49 13.56 4.90 14.75 5.18 15.54
Tx 0.3307 4.04 12.23 4.36 13.16 4.77 14.35 5.04 15.15
Tx 0.2396 3.77 11.43 4.04 12.23 4.45 13.43 4.77 14.35
Tx 0.0979 3.13 9.54 3.40 10.35 3.81 11.56 4.08 12.36
Rx - 4.13 12.50 4.13 12.50 4.13 12.50 4.13 12.50
Idle - 4.08 12.36 4.08 12.36 4.08 12.36 4.08 12.36
Sleep - 0.005 0.016 0.005 0.016 0.005 0.016 0.005 0.016

not be able to communicate their location information to
the central node and vice versa. Finally, since all the raw
data is required, the data aggregation that can be performed
within the network to conserve communication bandwidth
is minimal. One advantage of performing the computation
at a centralized location is that more rigorous localization
algorithms can be applied such as the one presented in [35].
Such algorithms however require much more powerful com-
putational capabilities than the ones available at low cost
sensor nodes. Overall, a centralized implementation will not
only reduce the network lifetime but it will also increase its
complexity and compromise its robustness. On the other
hand, if location estimation takes place at each node in a
distributed manner the above problems can be alleviated.
Topology changes will be handled locally and the location
estimate at each node can be updated at minimal cost. In
addition, the network can operate totally on location based
routing so the implementation complexity will be reduced.
Also since each node is responsible for determining its loca-
tion, the localization is more tolerant to node failures.

To evaluate energy consumption tradeo�s between the cen-
tralized and distributed approaches we run some simulations
on a typical sensor network setup. In our scenario the cen-
tral node is placed at the center of a square sensor �eld.
Furthermore, we assume the use of an ideal, medium access
control(MAC) and routing protocols. The MAC protocol is
collision free and the routing protocol always uses the short-
est route to the central node. The total number of bytes
transmitted by all the nodes during both distributed and
centralized localization is recorded. The network size var-
ied with the network density kept constant by using a value
of � = 6 or 117 nodes for every 10,000m2 (from table 3).
The simulation setup considers the same packet sizes as the
implementation on the medusa nodes. For the centralized
system each node forwards the range measurements between
all its neighbors. If the node is beacon it also forwards its
location information (this is 96 bits long which is equiva-
lent to a GPS reading). Once the location is computed, the
central node will forward the results back to node the cor-
responding unknown nodes. In the distributed setup, each
node transmits a short beacon signal (radio and ultrasound
pulse) followed by the senders location if the sender is a
beacon. In both cases, the simulation runs for one full cycle
of the localization process(until all feasible unknown node

positions are resolved). The average number of transmitted
bytes for each case are shown in �gures 19 and 20 for 10%
and 20% beacon density respectively. The results shown in
the �gure are averages of over 100 simulations with random
node placement following a uniform distribution.
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Figure 19: TraÆc in distributed and centralized im-
plementations with 10% beacons

Figure 21 shows the average energy consumption per node
for the Medusa nodes when the radio transmission power
is set to 0.24mW. This result is based on the power char-
acterization of the Medusa nodes from the previous sec-
tion. We also node that the energy overhead for the ultra-
sound based ranging is the same for both centralized and
distributed schemes therefore it is not included in the en-
ergy results presented here. These results show that in the
distributed setup has six to ten times less communiocation
overhead than the centralized setup. Another interesting
trend to note is that in the centralized setup, network traf-
�c increases as the percentage of beacon nodes increases. In
the distributed setup however, the traÆc decreases as the
percentage of beacon nodes increases. This decrease in traf-
�c is mainly attributed to the fact that most of the times
the localization process can converge faster if more beacon
nodes are available; hence less information exchange has to
take place between the nodes.
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Figure 21: Average energy spent at a node during localization with a) 10% beacons, b) 20% beacons

0

100

200

300

400

500

600

700

800

900

B
yt

es
T

ra
ns

m
itt

ed
(t

ho
us

an
ds

)

100 200 300 400 500 600 700

Network Size

Distributed Centralized

Figure 20: TraÆc in distributed and centralized im-
plementations with 20% beacons

8. CONCLUSIONS
We have presented a new localization scheme for wireless
ad-hoc sensor networks. From our study we found that the
use of ToA ranging is a good candidate for �ne-grained lo-
calization as it is less sensitive to physical e�ects. Received
RF signal strength ranging on the other hand is not suit-
able for �ne-grained localization. Furthermore, we conclude
that our �ne-grained localization scheme should operate in
a distributed fashion. Although more accurate location esti-
mations can be obtained with centralized implementation, a
distributed implementation will increase the system robust-
ness and will result in a more even distribution of power
consumption across the network during localization. Fur-
thermore, the implementation of our testbed proved to be
an indispensable tool for understanding and analyzing the
strengths and limitations of our approach. Although our
system performed very well for our experiments, we rec-
ommend the use of a more powerful CPU on the on the

sensor nodes for the following reasons. First, RF and ul-
trasound ToA ranging requires the use of a dedicated high
speed timer. In our implementation the 4MHz AVR micro-
controller is dedicated to localization and this is suÆcient.
If however, the microcontroller is expected to perform ad-
ditional tasks at the same time a higher performance pro-
cessor is highly recommended. Based on our experience, we
are currently developing a second generation of theMedusa

nodes. These nodes will be capable of performing hybrid
ranging by introducing the fusion of both ultrasonic ToA
ranging and received signal strength RF ranging. Finally,
in this initial study we found that the accuracy of iterative
multilateration is satisfactory for small networks but needs
to be improved for larger scale networks. To this end, as
part of our future work we plan to extend our algorithms
to achieve better accuracy by limiting the error propagation
across the network.
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1. INTRODUCTION 
Recent advances in low-power embedded processors, radios, 
and micro-mechanical systems (MEMs) have made possible the 
development of networks of wirelessly interconnected sensors. 
With their focus on applications requiring tight coupling with 
the physical world, as opposed to the personal communication 
focus of conventional wireless networks, these wireless sensor 
networks pose significantly different design, implementation, 
and deployment challenges. Their application-specific nature, 
severe resource limitations, long network life requirements, and 
the presence of sensors lead to interesting interplay between 
sensing, communications, power consumption, and topology 
that designers need to consider. Existing tools for modeling 
wireless networks focus only on the communications problem, 
and do no support modeling the power and sensing aspects that 
are essential to wireless sensor network design. In this paper, we 
present a set of models and techniques that are embodied in a 
simulation tool [1] for modeling wireless sensor networks. Our 
models are derived with detailed power measurements involving 
2 different types of sensor nodes representing two extremes; 
high-end WINS nodes [2] by Rockwell and low-end 
experimental nodes that we have built.  The WINS nodes have a 
StrongARM S1100 processor and a 100m-range radio and can 
carry a wide variety of sensors. The experimental nodes feature 
an AVR 90LS8535 microcontroller from Atmel and a low 
power radio 20m-range from RFM Monolithics and a similar to 
the COTS nodes from UC Berkeley [3].   

To instrument sensor network scenarios in a simulation 
environment, more features need are also introduced. The notion 
of a sensing channel is used to propagate stimuli to the sensors.  
Target models are responsible for generating the stimuli that 
trigger the sensors, which in turn become communication traffic 
towards a central base station.  All these actions affect power 
consumption, which directly affect the useful lifetime of the 
network. Since power consumption is a crucial factor we focus 
our study on empirical measurements of power consumption on 
sensor nodes that can be use to produce accurate models in a 
simulation environment. The sections that follow provide a brief 
overview of the sensor node and battery models and present the 
results of our power measurements. 

2. SENSOR NETWORK AND NODE 
MODELS 
A sensor network is modeled as a set of heterogeneous entities. 
Sensor nodes deployed over the area of interest are triggered by 
a certain set of stimuli that eventually result in a sensor report 
that is transmitted to a remote base station. Following this 
paradigm in a simulation environment, three main types of 

sensor nodes need to be created supported: 1) target nodes that 
stimulate the sensors, 2) sensor nodes to monitor events and 3) 
user nodes that query the sensors and are the final destination of 
the target reports.    

The most interesting model is that of the sensor node. In 
addition to the communication protocol stack, this node model 
also includes a sensing stack that provides the interface to the 
sensor physical layer. The two stacks are connected together 
with an application layer, and together they constitute the 
algorithmic component of the node.  To model power 
consumption, power models of the individual components are 
provided together with a battery model. As the protocols 
execute on the hardware, a corresponding amount of energy is 
depleted from the battery. Figure 1 provides an overview of the 
node model. This provides a flexible parametrizable model that 
can be applied to different sensor node architectures.  The 
challenge in achieving an accurate sensor node model is to 
understand how the node consumes power.   

 
3. BATTERY MODELS 
3.1 Linear Battery Model  
In this model, the battery is treated as linear bucket of energy.  
The maximum capacity of the battery is achieved regardless of 
what the discharge rate is.  Such a model allows the user to 
examine the efficiency of applications by providing a simple 
metric of energy consumption.  The remaining capacity after  

 

Figure 1 Sensor Node Model 
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operation duration of time td can be expressed by following 
equation.  Remaining capacity (in Amp*Hour) = 

∫
+

=

−=
dtt

tt

dttIUU
0

0

)(’ ,  where ’U  is the previous capacity and 

I(t) is the instantaneous current drawn from the sensor node at 
time t.   

3.2  Discharge Rate Dependent Model    
The maximum battery capacity is very much dependent on the 
discharge rate or the rate at which the current is withdrawn from 
the battery. At high discharge rates, the battery capacity is 
significantly reduced.  To consider this effect of discharge rate 
dependency, we introduce factor k which is the battery capacity 
efficiency factor that is determined by the discharge rate.  The 

definition of k is, 
tot

eff

C

C
k = , where Ceff  is the effective battery 

capacity and Ctot is the total rated capacity of the battery with 
both terms expressed in unit of Ampere*hour(Ah). 

3.3 Relaxation Model   
Real-life batteries exhibit a general phenomenon called 
"relaxation".  The relaxation occurs when the discharge current 
from the battery is cutoff or reduced after draining the battery at 
high discharge rate.  As the discharge rate of the battery drops, 

the battery’s cell voltage recovers, and the battery has a chance 
to recover the capacity lost due to the high discharge rate. The 
relaxation phenomenon is adapted to our battery model to 
simulate the behavior of real life battery. 

4. POWER CHARACTERIZATION 
Sensor node power consumption depends on the node’s mode of 
operation (receive, transmit, sleep, power down).  During its 
lifetime, a node may switch between different operational 
modes according to a specific task or power management 
scheme. By measuring the power consumption at the different 
operational modes accurate models can be constructed and 
useful insight can be obtained about the individual components 
of the sensor nodes. 

Using an HP 1660 oscilloscope and a high precision resistor we 
measured the power consumption of the radio and CPU of 2 
types of nodes (WINS and Experimental nodes) at different 
operational modes. Table 1 shows the power measurements for 
the CPUs on the 2 nodes.  The power consumption for the 
WINS radio is shown in table 2. The power consumption for the 
RFM radio is shown in table 2 and figure 2. 

These measurements show some notable trends of how power 
consumption is distributed in a sensor node. In both nodes, the 
radio consumes the most power; 50-67% of the total power 
consumption. Furthermore, the difference in power consumption 
between transmission and reception in low power radios is very 
small. For the WINS radio the transmission power is at most 2 
times greater than reception and 1.4 times greater for the RFM 
radio. At some power levels, the transmit power is smaller than 
the receive power (figure 2).   
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Table 1 CPU Measurements for WINS and 
Experimental Nodes 

Table 3 RFM Radio Measurements 

Figure 2 RFM Radio Power Comparisons 

Table 2 WINS Radio Measurements 
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Scenario II: Node positions and coverage
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ABSTRACT 

Recent advances in low-power embedded processors, ra-
dios, and micro-mechanical systems (MEMs) have made 
possible the development of networks of wirelessly inter-
connected sensors. With their focus on applications requir-
ing tight coupling with the physical world, as opposed to 
the personal communication focus of conventional wireless 
networks, these wireless sensor networks pose significantly 
different design, implementation, and deployment chal-
lenges. In this paper, we present a set of models and tech-
niques that are embodied in a simulation tool for modeling 
wireless sensor networks. Our work builds up on the infra-
structure provided by the widely used ns-2 simulator, and 
adds a suite of new features and techniques that are spe-
cific to wireless sensor networks. These features introduce 
the notion of a sensing channel through which sensors de-
tect targets, and provide detailed models for evaluating en-
ergy consumption and battery lifetime. 

1 INTRODUCTION 

The marriage of ever tinier and cheaper embedded proces-
sors and wireless interfaces with micro-sensors based on 
micro-mechanical systems (MEMS) technology has led to 
the emergence of wireless sensor networks as a novel class 
of networked embedded systems. Many interesting and di-
verse applications for these systems are currently being ex-
plored. In indoor settings, sensor networks are already be-
ing used for condition-based maintenance of complex 
equipment in factories. In outdoor environments, these 
networks can monitor natural habitats, remote ecosystems, 
endangered species, forest fires, and disaster sites.   

The primary interest in wireless sensor networks is due 
to their ability to monitor the physical environment through 
ad-hoc deployment of numerous tiny, intelligent, wirelessly 
networked sensor nodes.  Because of the large numbers of 
sensor nodes required, and the type of applications sensor 

networks are expected to support, sensor nodes should be 
small, tetherless, and low cost. Due to these requirements, 
networked sensors are very constrained in terms of energy, 
computation and communication. The small form factor re-
quirement prohibits the use of large long lasting batteries. 
Low production costs and low energy requirements suggest 
the use of small, low power processors, and small radios 
with limited bandwidth and transmission ranges. The ad-
hoc deployment of sensor nodes implies that the nodes are 
expected to perform sensing and communication with no 
continual maintenance and battery replenishment. The en-
ergy constraints call for power awareness, which in turn 
leads to additional tradeoffs. The high-energy costs associ-
ated with wireless transmission, made particularly severe 
for sensor networks because nodes with small antenna 
heights placed on the ground see 1/r4 wireless link path loss 
coupled with the ever reducing cost of processing has led to 
a the adoption of a distributed computing viewpoint for 
wireless sensor networks. Instead of simply sending the raw 
data (perhaps compressed) to a gateway node, in typical ap-
plications the nodes in wireless sensor networks perform 
computation for decision making within the network, either 
individually via techniques such as signature analysis or in 
local clusters using coherent combining of raw sensor sig-
nals (i.e. beam forming) or non-coherent combining of de-
cisions (i.e. Bayesian data fusion). By performing the com-
putation inside the network, communication may be 
reduced thus prolonging the network lifetime 

We construct a versatile environment in which sensor 
networks can be studied.  This environment employs a wide 
range of models to orchestrate and simulate realistic scenar-
ios. Furthermore, since power consumption is also a key de-
sign factor, we emphasize power consumption and battery 
behavior models. First we create a set of sensor node models 
that are derived from the empirical power characterization of 
two different nodes representing two extremes; the WINS 
node (Rockwell Scientific Company LLC. 2001) from 
Rockwell Science Center and the Medusa node, an experi-
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mental prototype that we have constructed.  These sensor 
node models are combined into the widely used event queue 
based network simulator, ns-2 (ns-2 Simulator 2001).  By 
introducing the notion of sensing channels in our simulation 
environment and a flexible and highly parametrizable sce-
nario generation tool, we can study the power consumption 
of sensor nodes by instrumenting complex sensor network 
scenarios in a detailed graphical environment. 

2 RELATED WORK 

Although sensor networks have recently received a lot of 
attention, there are still not many formal tools available for 
the systematic study of sensor networks.  The work in 
(Ulmer 2001) presents a Java based simulator for sensor 
networks.  This is an online simulator that can create and 
simulate simple topologies but does not have any explicit 
models for sensors or power management. Up to this point 
there is no publication on this work. On the network simu-
lation, numerous simulators are currently available such as 
GloMoSim, OPNET and ns-2. These simulators provide 
great flexibility in the simulation of wireless ad-hoc net-
works at all layers. Despite their effectiveness, these tools 
are currently not equipped for capturing all the aspects of 
interest in sensor networks.  

3 SIMULATION ARCHITECTURE OVERVIEW 

We motivate our discussion with an example of a sensor 
network illustrated in figure 1.  In this example, a set of 
wireless nodes equipped different sensor  for monitoring 
natural habitat.  The results of these sensors are processed 
within the network and the final sensing report is for-
warded via wireless links to the gateway nodes that makes 
the results available on the internet. The main goal of our 
work is to recreate such scenarios in a versatile simulation 
environment where the behavior of the sensor network can 
be analyzed. 

In our simulation environment, a typical sensor net-
work scenario will consist of three types of nodes: 1) sen-
sor nodes that monitor their immediate environment, 2) 
target nodes that generate the various sensor stimuli that 
are received by multiple sensor nodes via potentially many 
different transducers (e.g. seismic, acoustic, infrared) over 
different sensor channels; e.g. a moving vehicle generates 

ground vibrations that trigger seismic sensors and sound 
that triggers acoustic sensors, and 3) user nodes that repre-
sent clients and administrators of the sensor network. 
Shown in figure 2, three type of node models make up the 
key building blocks of our simulation environment. The 
sensor nodes are the key active elements, and form our fo-
cus in this section. In our model, each sensor node is 
equipped with one wireless network protocol stack and one 
or more sensor stacks corresponding to different types of 
transducers that a single sensor node may possess. The role 
of the sensor protocol stacks is to detect and process sensor 
stimuli on the sensing channel and forward them to the ap-
plication layer which will process them and eventually 
transmit them to a user node in the form of sensor reports.  
In addition to the protocol and sensor stacks that constitute 
the algorithmic components, each node is also equipped 
with a power model corresponding to the underlying en-
ergy-producing and energy-consuming hardware compo-
nents. This model is composed of an energy provider (the 
battery) and a set of energy consumers (CPU, Radio, Sen-
sors). The energy consuming hardware components can 
each be in one of several different states or modes, with 
each mode corresponding to a different point in perform-
ance and power space. For example, the radio may be in 
sleep mode, receive mode, or one of several different 

Figure 1:  Sensor Network Scenario 

Figure 2:  Sensor Node Model Architecture 
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transmit modes corresponding to different symbol rates, 
modulation schemes, and transmit power. Similarly, the 
CPU may be in sleep mode, or one of several different ac-
tive modes corresponding to different frequency and volt-
age. The algorithms in the network and sensor stack con-
trol the change in mode of the power consumers. For 
example, the MAC protocol may change the radio mode 
from sleep to receive. In return, the performance of the al-
gorithms may depend on the mode. For example, the time 
taken by the physical layer in the network protocol stack 
would depend on the data rate of the mode the radio is cur-
rently in. All of this is accomplished by having the algo-
rithms in the network and sensor stacks issue mode change 
events to the power consumer entities, and having the algo-
rithms read relevant parameter values from those entities. 
Algorithm-induced changes in the operating modes of 
power consuming hardware entities in turn affect the cur-
rent drawn by them from the battery which delivers the 
power corresponding to the sum of current (or power) 
drawn by each power consumer. Internally, the battery en-
tity depletes its stored chemical energy according to the ef-
ficiency dictated by the battery model.  

Figure 3 illustrates how a typical sensor network will 
be constructed and simulated using our simulation envi-
ronment. In figure 3, the wireless channel and sensor chan-
nel form separate communication mechanisms where 
events from different nodes are passed through. A typical 
scenario will involve a target node passing through a group 
of sensor nodes deployed in the field.  As the target node 
moves around, it gives out sensor signal in the form of 
events through the sensor channel and each sensor node 
detects the events based on propagation model imple-
mented in each node’s sensor stack.  When sensor nodes 
determine the sensor signals (events) are noteworthy, they 
transmit packets (also in the form of events) through the 
wireless channel destined to the user node.   

By separating the sensor channel and the wireless 
channel, our sensor network model makes easier to simu-

late and analyze the operation of sensor network where the 
sensor signal detection events and wireless communication 
events can be received or transmitted concurrently.  More-
over, by allowing sensor node to connect to multiple sensor 
channels, our simulation environment provides ability to 
analyze complex behaviors of sensor nodes’ reaction to 
multiple sensor signals (i.e. seismic vibration, sounds, 
temperature, etc..) that can be detected all at the same time.  
In the following section, we discuss each components of 
the sensor node model shown in figure 2, and explain how 
we construct the model of different sensor nodes’ compo-
nents.  

4 FRAMEWORK OF SENSOR  
NETWORK SIMULATION 

4.1 Node Placement and Traffic Generation 

In studying the performance of a wireless sensor network for 
a given application, a crucial element is the overall deploy-
ment scenario which includes the node placement topology, 
the radio ranges, the sensing ranges, the trajectories of the 
targets and resultant event traffics, and the trajectories of the 
user nodes and their query traffics.  All these elements con-
tribute to the different design trade-offs that can be made, 
and it is crucial to evaluate the effects of a new algorithm or 
protocol under diverse deployment scenarios.  

To study such effects, we have developed a detailed 
scenario generation and visualization tool that enables us to 
construct detailed topologies and sensor network traffic. 
Our simulation environment enables us to assess the re-
quirements of a sensor network under different circum-
stances by generating detailed scenario input to our simula-
tions. This complements the scenario generation techniques 
provided in (ns-2 Simulator 2001) which are mainly tar-
geted to ad-hoc wireless communication networks. Sensor 
node placement can vary depending on intended the task on 
the network.  For example, to monitor wildlife in a forest, 
sensors may be uniformly distributed in the forest.  If how-
ever, the sensor network is deployed for perimeter defense, 
then the sensors will most likely be distributed around a 
specified perimeter in a two dimensional gaussian distribu-
tion. In some other cases, the sensors may be manually 
placed according to the requirements of the user.  

Besides placement, the traffic requirements may be 
even more diverse. Sensor network traffic can be classified 
into 3 main types: 1) user-to-sensor traffic, which is a re-
sult of user commands and queries to the network, 2) sen-
sor-to-user traffic, which consists of the sensor reports to 
the user and 3) sensor-to-sensor traffic, which includes 
collaborative signal-processing of sensor events in the 
network before they are reported to the user.  The last type 
of traffic is the most complex, and it depends on the sens-
ing method.  

Figure 3:  Sensor Network Model Architecture 
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4.2 Sensor Stack and Sensor Channel  

The sensor stack simulates how a sensor node generates, 
detects and processes sensor signals. In sensor node model 
(figure 2), the sensor stack is a signal sink that is responsi-
ble for triggering the application layer every time a sensing 
event occurs. Various trigger functions ranging from sim-
ple sensing schemes to elaborate signal processing func-
tions can be implemented in the sensor stack. In target 
node model,  the sensor stack acts as a signal source. The 
sensor stack of a target node will contain a signature that is 
unique to the type of target the target node is modeling.   
The signature is then transmitted through various mediums 
(ground, air, free space, water, etc..) as the target node 
moves around. figure 4a and 4b show a real and a simu-
lated signature obtained from a seismic sensor triggered by 
ground vibration from a traveling vehicle.  

In figure 4, the ground is the medium that transmits 
the vibrations to the seismic sensor. We refer to this me-
dium as the sensor channel, a model of a medium which 
sensor events such as seismic vibration, sounds, or infrared 
signals are traveled through.  The type of medium can dif-
fer based on the type of sensor being modeled (seismic, 
acoustic, infra red, ultrasonic).  Moreover, depending on 
the medium being modeled, the propagation of signal can 
differ.  For instance, a sound moving through the air will 
have different propagation as the same sound moving 
through the water.  In order to incorporate all these differ-
ent aspects of the sensor network in to our simulation, we 
implement a simple sensor stack and sensor channel model 
by modeling the target node as a gaussian source whose 
signal amplitude is modeled as a gaussian random variable 
with the mean equal to zero and the variance σ2.  As the 

target travels through the sensor network, the target exerts 
the vibration signals (signal events) into the sensor channel 
periodically. The sensor channel then delivers this events 
to each sensor node’s sensor stack and each sensor node 
adjusts the signal strength of the target based on sensor 
channels propagation model.  The figure 4b demonstrates 
the signal strength variation as a target passes by a sensor 
node on a straight line.  As the target approaches the sensor 
node, the signal strength increases, and as the target moves 
away, the signal attenuates rapidly.  In this simulation the 
sensor signal was attenuated at a rate of 1/r where r is the 
distance between the target and the sensor.   

4.3 Hardware Components Characterization 

Mode 
ID 

CPU Radio(OOK 
Modulation)  

ADC Total 
Current 

1 Active 
2.9mA 

Tx-19.2kbps 
5.2mA 

On 8.1mA 

2 Active 
2.9mA 

Tx-2.4kpbs 
3.1mA 

On 6.0mA 

3 Active 
2.9mA 

Rx:4.1mA On 7.0mA 

4 Sleep 
1.9mA 

Sleep:5µA On 1.9mA 

5 Off 
1µA 

Sleep:5µA Off 6µA 

 
We construct our power models by performing measure-
ments of the hardware power consumption using an HP 
1660 oscilloscope, a bench power supply, and a high preci-
sion resistor. The measurement setup and power relation-
ships are shown in figure 5. By characterizing each com-
ponent of the sensor nodes we enable the simulated nodes 
to operate at different modes in which the power manage-
ment schemes can switch different components on and off.  
Using the configuration in figure 5, the total current con-
sumption of our experimental sensor node is obtained in 
Table 1. The measurements listed in Table 1 provide a bet-
ter insight into the power consumption of the sensor nodes 
since the actual power consumption is oftentimes different 
from the typical values provided in the manufacturer data 
sheets depending on the mode of operation. 

Table 1: Experimental Node Current Consumption 

Figure 5: Power Measurement Configuration 
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Figure 4:  a) Real Target Seismic Signature
b) Simulated Target Seismic Signature  
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4.4 Battery Models   

The Battery Model simulates the capacity and the lifetime 
of the sole energy source of the sensor node, the battery.  
In reality, battery behavior highly depends on the constitu-
ent materials and modeling this behavior is a difficult task.  
Although the battery can be viewed as a energy storage, 
the main goal of the sensor network is to increase the life-
time of the battery.  Thus, in this section, we focus on how 
battery’s capacity can be modeled based on the energy 
consumers’ behavior.  We propose 3 different types of bat-
tery models to study how different aspects of real battery 
behavior can affect the energy efficiency of different appli-
cations.  The metrics that are used to indicate the maxi-
mum capacity of the battery is in the unit of Ah (Am-
pere*Hour). The metric is a common method used by the 
battery manufacturers to specify the theoretic total capacity 
of the battery.  Knowing the current discharge of the bat-
tery and the total capacity in Ah, one can compute the 
theoretical lifetime of the battery using the equation , 

I
CT =  , where T=battery lifetime, C=rated maximum 

battery capacity in Ah, and I=discharge current. 

4.4.1 Linear Model  

In Linear Model, the battery is treated as linear storage of 
current.  The maximum capacity of the battery is achieved 
regardless of what the discharge rate is.  The simple battery 
model allows user to see the efficiency of the user’s appli-
cation by providing how much capacity is consumed by the 
user.  The remaining capacity after operation duration of 
time td can be expressed by the following equation. 

 

Remaining capacity (in Ah) = ∫
+

=

−=
dtt

tt

dttICC
0

0

)('   (1) 

 
where C’ is the previous capacity and I(t) is the instantane-
ous current consumed by the circuit at time t.  Linear 
Model assumes that I(t) will stay the same for the duration 
td, if the operation mode of the circuit does not change ( i.e. 
radio switching from receiving to transmit, CPU switching 
from active to idle, etc.. ) for the duration td.   With these 
assumptions equation 1 simply becomes as the following.   

 

  d
tt

t

tt

tt

tIC'tIC'I(t)dtC'C d
d

⋅−=⋅−=−= +
+

=
∫ 0

0

0

0

 (2) 

 
The total remaining capacity is computed whenever 

the discharge rate of the circuit changes.    

4.4.2 Discharge Rate Dependent Model  

While Linear Model assumes that the maximum capacity 
of the battery is unaffected by the discharge rate, Discharge 
Rate Dependent Model considers the effect of battery dis-
charge rate on the maximum battery capacity.  In [15] [16], 
it is shown that battery’s capacity is reduced as the dis-
charge rate increases.  In order to consider the effect of 
discharge rate dependency, we introduce factor k which is 
the battery capacity efficiency factor that is determined by 

the discharge rate.  The definition of k is, 
maxC

C
k eff= , 

where Ceff  is the effective battery capacity and Cmax is the 
maximum capacity of the battery with both terms ex-
pressed in unit of Ah. In Discharge Rate Dependent Model, 
the equation 1 is then transformed to the following.   

 
    dtICkC ⋅−⋅= '   (3) 

 
The efficiency factor k varies with the current I and is 

close to one when discharge rate is low, but approaches 0 
when the discharge rate becomes high.  One way to find 
out corresponding k value is for different current value of I 
is to use the table driven method introduced in (Simunic 
1999).   

4.4.3 Relaxation Model  

Real-life batteries exhibit a general phenomenon called 
“relaxation” explained in (Fuller 1994, Linden 1995, Chi-
asserini 1999).  When the battery is discharged at high rate, 
the diffusion rate of the active ingredients through the elec-
trolyte and electrode falls behind.  If the high discharge 
rate is sustained, the battery reaches its end of life even 
though there are active materials still available.  However, 
if the discharge current from the battery is cutoff or re-
duced during the discharge, the diffusion and transport rate 

Figure 6: Capacity vs. Discharge Rate Curve for 
CR2354 (Matsushita Electric Corp. of America 
2001) 
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of active materials catches up with the depletion of the ma-
terials.   This phenomenon is called relaxation effect, and it 
gives the battery chance to recover the capacity lost at high 
discharge rate. For a realistic battery simulation, it’s impor-
tant to look at the effects of relaxation as it has effect of 
lengthening the lifetime of the battery. For our simulation, 
we adapt the analytical model introduced in (Fuller 1994) 
which takes discharge rate as input and computes the bat-
tery voltage over the simulation duration. 

5 EXAMPLE STUDY CASE 

In this section we demonstrate some of the main capabili-
ties of our tool by studying the performance of different 
battery models with various sensor node operation profile.  

5.1 Low Rate/Low Power vs. High Rate/High Power 

In this case study, we evaluate the battery consumption of 
our experimental sensor node by considering different op-
eration profiles.  In section 4.3, we have discussed how 
each component of our sensor node has different power 
consumption depending on its operation mode.  In this sec-
tion, we examine how the combination of the operation 
modes of different components affects the aggregate power 
consumption of the sensor node.  The scenario involves 
two sensor nodes (a transmitter and a receiver) that are 
within the transmission range of each other (approximately 
15 meters apart) where the transmitter needs to transmit a 
2MB file to the receiver. For the purposes of our discus-
sion we define 5 different operation modes for our experi-
mental node shown in table 1.  To examine the energy con-
sumption and communication tradeoffs we evaluate 3 
different data transmission policies. 

1)19.2 kbps continuous transmission: The transmitter 
sends data at the highest data rate without any break. The 
transmitter will be operating in mode 1 and the receiver 

will be operating in mode 3; 2) 2.4 kbps continuous trans-
mission:  With lower data rate the sender can transmit at a 
lower power level to reach the receiver.  The transmitter 
will be operating in mode 2 and the receiver will be operat-
ing in mode 3; 3) 19.2 kbps pulse transmission: The trans-
mitter sends data intermittently at the highest power level.  
While the transmitter is not transmitting, the transmitter 
puts the CPU and Radio to sleep.  The transmitter power 
cycle its component by transmitting one 60 byte packet at 
19.2 kbps for .025 sec and sleeps for .125 sec until all the 
data is received by the receiver.  The transmitter will be 
switching between modes 1 and 4, and the receiver will be 
switching between mode 3 and 4. 

Figure 7a shows the effect on each battery model ca-
pacity after the 2 MB data transfer for the three transmis-
sion methods described above.  This experiment was per-
formed for all three battery models described in section 
4.4.  Initially, all batteries were set to a capacity level of 10 
mA*hour.  The left half of figure 7a describes the remain-
ing battery capacity of the transmitter after the file transfer, 
and the right half shows the receiver battery capacity.   The 
solid bar in the figure indicates the total time for data trans-
fer.  Looking at the solid bar, it is clear that the sending the 
file at high data rate takes the least time thus the least bat-
tery capacity.  Although the 2.4 kbps transmission and 19.2 
kbps transmission took the same amount of time to trans-
mit the data, 19.2 kbps pulse transmission saved much bat-
tery capacity due to the sleep period.   Figure 7a also 
shows how different battery models exhibit different char-
acteristics under different transmission methods.  The lin-
ear model shows how optimum battery will behave as it 
shows the theoretical capacity of the battery under any dis-
charge current.  On the other hand, the rate dependent 
model accurately describes how real batteries will behave 
when there is a constant discharge for long duration. This 
is shown in 2.4 kbps transmission where the remaining ca-
pacity of rate dependent model is substantially less than the 
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Figure 7: a) Battery Capacity Usage Under Different Discharge Profiles, b) Battery Utilization Rate 
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linear model.  The other interesting model is the relaxation 
model which exhibits the both discharge rate dependent 
capacity and recovery effect.  Since the relaxation model 
has recovery properties, the difference between relaxation 
model and rate dependent model is shown in the pulsed 
transmission cases.  In figure 7a the relaxation model has 
the same remaining battery life as rate dependent model for 
19.2kbps and 2.4 kbps continuous transmission and recep-
tion.  However, in 19.2 kbps pulse transmission and recep-
tion, the relaxation model has almost equal capacity as the 
linear model due to the capacity recovery during the sleep 
mode.    

5.2 Monitoring a Moving Vehicle in a Sensor Field 

In this implementation we first show the effect of traffic on 
the sensing and communication traffic and then we evalu-
ate simple power management scheme using the same sen-
sor node setup as in the previous subsection. For this we 
have implemented a lightweight protocol stack similar to 
what one would expect to have on a tiny sensor node. The 
radio transmission and reception are driven by a  TDMA 
based medium access control (MAC) protocol based on 
unique slot assignment algorithm derived from [9].  The 
MAC protocol assigns a unique slot to each node over a 2-
hop radius and each node is aware of its one-hop neighbors 
and their corresponding slot assignment. For routing, we 
have implemented a very lightweight table-driven routing 
protocol with table size of one (next hop to user node).  
The motivation for TDMA scheme comes from our result 
in section 5.1 where a pulse transmission and reception can 
improve the battery utilization in the long term. In our 
power aware TDMA scheme this requirement is met for 
both the transmission and reception of packets. For trans-
mission, a node is only allowed to transmit in its assigned 
time-slot. For reception, a node only needs to listen to the 
wireless channel for the duration of the slots that are al-
ready assigned to its one-hop neighbors. For the purposes 
of our discussion we refer to all the other remaining slots 
as idle slots.  

In this scenario, a small cluster of 10 sensors equipped 
with seismic sensors is deployed to detect a bypassing 
truck as shown in figure 8a. The seismic sensors run at a 
sample rate of 400Hz to produce 16 bit samples. The sen-
sor nodes are configured to report back to a gateway node 
that makes the results available on the Internet. Each sen-
sor is programmed to transmit a report to the gateway 
within 5 seconds from the moment the ground vibrations 
from the truck are detected.  If at least 2048 samples are 
obtained, the node can perform coherent detection and it 
will transmit a 10 byte to report the target type. This short 
packet is called “coherent traffic”. If however, the node 
does not have enough samples at the end of the 5-second 
period, it enters a non-coherent detection mode and trans-
mits all its available samples to the gateway node which 
performs sensor data combination (called  “beamforming” 
[20]) to improve the detection accuracy.  Since the sensor 
node transmits raw data when it enters non-coherent detec-
tion mode, the size of non-coherent data tends to be lot lar-
ger than the coherent traffic.  This non coherent raw data is 
referred to as “non-coherent traffic” During the simulation, 
the network traffic will be consist of coherent and non-
coherent traffic depending on whether the individual sen-
sors successfully classified the target.  We discuss the re-
sult of the simulation in the following two sub sections. 

5.2.1 Efficiency of Power Management  
Scheme with TDMA 

One apparent advantage of TDMA over other CSMA ran-
dom access MAC protocols is the fact that the sensor nodes 
do not have to be in receive mode during the time slots 
where none of its neighbors are schedule to transmit.  This 
allows the sensor nodes to perform a simple power man-
agement scheme that puts the CPU and radio to sleep dur-
ing idle slots to conserve battery capacity.  With this setup, 
we evaluate the efficiency of battery capacity utilization 
when this simple power management scheme is used.  Fig-
ure 8a is the scenario used for our evaluation. It consists of 
100 nodes uniformly distributed across a sensor field. The 

Figure 8: a) 100 Node Test Topology, b) Battery Capacity Usage 
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target travels at approximately 22 mph (10 m/s) through 
the track every 2 minutes.  The target signals have an 
effective range of 20 meters. As the target travels through 
the sensor field, every node within the range of the target 
start collecting signal samples at 400 Hz, then send reports 
to the user node.  We tested this scenario using the linear 
model and the rate dependent model by looking at battery 
utilization when the power management scheme is imple-
mented (PM) and when there is no power management 
(NOPM). 

The current drawn by each node will be similar to the 
cases described in section 5.1 with power management 
case resembling the 19.2 kbps pulse transmission and the 
no power management case resembling the 19.2 kbps con-
tinuous transmission.  Figure 8b shows the average battery 
capacity utilization for each node. The bottom two curves 
show the difference in battery capacity utilization when the 
power management was used and the top two describe the 
cases when no power management is used.  As the figure 
indicates, there is almost 100% improvement of battery 
utilization with the power management.   

5.2.2 Effect of Sensor Power Cycle 

In addition to the battery saving achieved by the TDMA 
power management scheme, we further look at how the 
sensor nodes can power cycle their sensors to conserve bat-
tery capacity.  In this scenario (figure 9a), a square grid of 
sensor network is strategically placed over a flat field.  The 
target travels along a pre-specified path and the sensor 
nodes attempts to make either coherent or non-coherent de-
tection as described in the previous section. One difference 
in this scenario is that the sensor nodes attempt to turn on 
the sensors only intermittently to conserve power.  When 
the sensor is turned off, the CPU of our experimental sen-
sor node can go to mode 5 (table 1) where the power con-

sumption is in the range of microwatts.  However, the 
trade-off comes from the reduction of detection and classi-
fication accuracy since the sensor will miss the sensor sig-
nals coming from the target when they are turned off. The 
cost of such missed events may be very application spe-
cific.  If the target occurrence is very frequent, it may be 
okay to miss its detection, but if the occurrence is very in-
frequent, it may be very crucial to detect that one inci-
dence. It is possible that the whole sensor network may 
have been deployed to detect that “one” incidence.  There-
fore, in designing sensor network it’s crucial to look at the 
application requirement as well as the target characteristics 
to guarantee of certain quality of service (QoS) similar to 
the one provided in telecommunication network.  One such 
QoS guarantee will be something like  “a target with a 20 
mph speed following this track will not pass through the 
sensor field undetected”.  In this section, we try to look at 
what would be the maximum battery power saving that can 
be achieved while providing such QoS guarantees.  

We look at the impact of a simple power management 
scheme which randomly wakes up the sensor within a pre-
specified time window of 100 seconds and stay up for dif-
ferent percentage of duration.  Figure 9b shows the battery 
capacity used and the amount of coherent data bytes 
transmitted for different power cycle durations.  The plot 
indicates that there is a rapid decrease in coherent detection 
as the power cycle percentage decrease from 60% to 50%.  
On the other hand, the battery utilization steadily decreases 
as the power cycle percentage decreases.  

6 CONCLUSIONS 

We have demonstrated a flexible toolset for studying 
power consumption in sensor networks. With the flexible 
architecture that closely simulate the behavior of real sen-
sor network, accurate power models of sensor nodes and 
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analysis of battery behavior are utilized in a tool to evalu-
ate power consumption in the context of a realistic sce-
nario. With these results we can assess the power 
consumption for new sensor nodes that are currently under 
development. Furthermore, this tool has been an indispen-
sable aid in estimating the resources required for the net-
work protocols to function correctly in new node architec-
tures. By simulating and validating target protocols we can 
also get a good indication of code size and memory re-
quirements thus resulting in feasible low cost designs. We 
envision that this set of tools will play an instrumental role 
in the design and implementation of new application spe-
cific sensor networks. 
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ABSTRACT 

Wireless sensor nodes can be deployed on a battlefield and 
organize themselves in a large-scale ad-hoc network. 
Traditional routing protocols do not take into account that 
a node contains only a limited energy supply. Optimal 
routing tries to maximize the duration over which the 
sensing task can be performed, but requires future 
knowledge. As this is unrealistic, we derive a practical 
guideline based on the energy histogram and develop a 
spectrum of new techniques to enhance the routing in 
sensor networks. Our first approach aggregates packet 
streams in a robust way, resulting in energy reductions of 
a factor 2 to 3. Second, we argue that a more uniform 
resource utilization can be obtained by shaping the traffic 
flow.  Several techniques, which rely only on localized 
metrics are proposed and evaluated. We show that they 
can increase the network lifetime up to an extra 90% 
beyond the gains of our first approach. 
 
 

I. INTRODUCTION 

Recently IC and MEMS have matured to the point where 
they enable the integration of communications, sensors and 
signal processing all together in one low-cost package. It is 
now feasible to fabricate ultra-small sensor nodes that can 
be scattered on the battlefield to gather strategic 
information [1]. The events detected by these nodes need 
to communicated to gateways or users who tap into the 
network. This communication occurs via multi-hop routes 
through other sensor nodes. Since the nodes need to be 
unobtrusive, they have a small form-factor and therefore 
can carry only a small battery. As a result, they have a 
limited energy supply and low-power operation is a must. 
Multi-hop routing protocols for these networks necessarily 
have to be designed with a focus on energy efficiency. 

The proposed approaches lean towards localized 
algorithms [1][2]. Due to the large number of sensors, 
network-scale interaction is indeed too energy expensive. 
Moreover, a centralized algorithm would result in a single 
point of failure, which is unacceptable in the battlefield. In 
this paper, we propose two options for localized 
algorithms to increase the sensor network lifetime: (1) 

minimize the energy consumption of transmissions and (2) 
exploit the multi-hop aspect of network communications.  

The first option is to combine/fuse data generated by 
different sensors [1][2]. In [3] cluster head selection is 
proposed to perform this task. However, in section IV, we 
present a robust way of achieving the same functionality 
without explicit cluster formation. 

The second option focuses on the paths that are followed 
during the data routing phase. The framework presented in 
[2] advocates a localized model called ‘directed diffusion’. 
Other work uses information on battery reserve and the 
energy cost to find the optimal routes [4]. The routing 
protocol in [5] is based on the node’s location, transmit 
energy and the residual battery capacity. In contract to this 
prior work, we propose a guideline that aims at spreading 
the network traffic in a uniform fashion. Our spreading 
ideas, although partly tailored towards the underlying 
routing algorithm we have chosen, should be beneficial for 
the energy aware routing protocols mentioned above. We 
discuss these spreading techniques in section V. 

However, before discussing our data fusion and spreading, 
we first focus on the problem statement: how to increase 
the lifetime of a network of energy constrained devices. 
This results in a practical guideline, which considers the 
energy histogram. All of this is treated in section II. 

 

II. PROBLEM STATEMENT  

1.  Energy Optimal Routing 

Traditional ad-hoc routing algorithms focus on avoiding 
congestion or maintaining connectivity when faced with 
mobility [6]. They do not consider the limited energy 
supply of the network devices. The example of figure 1 
illustrates how the limited supply alters the routing issue.  
Nodes A and E first send 50 packets to B. Afterwards, F 
sends 100 packets to B. From a load balancing perspective, 
the preferred paths are ADB, ECB and FDB respectively. 

However, when the nodes are energy constrained such that 
they can only send 100 packets, these paths are no longer 
optimal. Indeed, D would have used up 50% of its energy 
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before it can forward packets from F to B. In this case, all 
packets could have been delivered by choosing paths ACB, 
ECB and FDB.  If, instead of F, node C would have 
become active, A should have used the original path ADB.  
 

 

 

 

Figure 1: Load versus energy oriented routing 

 

This simple case study highlights the following crucial 
observation: optimal traffic scheduling in energy 
constrained networks requires future knowledge. In our 
example, a maximum number of packets can reach B only 
if right from the start we know exactly when (and which) 
nodes will generate traffic in the future. 

 

2. Energy Efficient Routing 

Ideally, we would like the sensor network to perform its 
functionality as long as possible. Optimal routing in 
energy constrained networks is not practically feasible 
(because it requires future knowledge). However, we can 
soften our requirements towards a statistically optimal 
scheme, which maximizes the network functionality 
considered over all possible future activity. A scheme is 
energy efficient (in contrast to ‘energy optimal’) when it 
is statistically optimal and causal (i.e. takes only past and 
present into account). 

In most practical surveillance or monitoring applications, 
we do not want any coverage gaps to develop. We 
therefore define the lifetime we want to maximize as the 
worst-case time until a node breaks down, instead of the 
average time over all scenarios. However, taking into 
account all possible future scenarios is too computationally 
intensive, even for simulations. It is therefore certainly 
unworkable as a guideline to base practical schemes on. 
Considering only one future scenario leads to skewed 
results, as shown in the example of figure 1. 

 

3. Traffic Spreading Rationale 

To derive a practical guideline, we start from the following 
observation: the minimum hop paths to a user for different 
streams tend to have a large number of hops in common 
[7]. Nodes on those paths die sooner and therefore limit 
the lifetime of the network. Figure 2 presents a typical 
energy consumption histogram at a certain point in time. 
Some nodes have hardly been used, while others have 
almost completely drained their energy. 

 

 

 

 

 

 

 

 

Figure 2: Undesirable energy histogam 

 

As nodes that are running low on energy are more 
susceptible to die sooner, they have become more critical. 
If we assume that all the nodes are equally important (we 
revisit this assumption in section V.2), no node should be 
more critical than any other one. At each moment every 
node should therefore have used about the same amount of 
energy, which should also be minimized. The histogram of 
figure 3 is thus more desirable than the one of figure 2, 
although the total energy consumption is the same. 

 

 

 

 

 

 

 

 
Figure 3: Desirable energy histogram 

 

Striving for a compact energy histogram translates into 
the guideline that traffic should be spread over the network 
as uniformly as possible. Since visualizing the histogram 
over time is hard, we propose to use the root mean square 
ERMS as an indicator instead (the lower this value, the 
better). It provides information on both the total energy 
consumption and on the spread. 

 

III. BASIC ROUTING  

As an underlying routing scheme, we base ourselves on the 
paradigm of directed diffusion [2]. When a user taps into 
the sensor network, he announces the type of information 
he is interested in. While flooding this ‘interest’ possibly 
using techniques like SPIN [8], gradients are established in 
each node. These gradients indicate the ‘goodness’ of the 
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different possible next hops and are used to forward sensor 
data to the user. 

We have opted for a simple instantiation of this paradigm, 
which we call Gradient-Based Routing (GBR). While 
being flooded, the ‘interest’ message records the number 
of hops taken. This allows a node to discover the minimum 
number of hops to the user, called the node’s height. The 
difference between a node’s height and that of its neighbor 
is considered the gradient on that link. A packet is 
forwarded on the link with the largest gradient. Although 
our techniques to increase the network lifetime are built 
upon GBR, the main principles are general enough to also 
be applicable to other ad-hoc routing protocols. 

 

IV. DATA COMBINING 

1. Data Combining Entities (DCE) 

Individual sensor nodes process their sensor data before 
relaying it to the user [1]. It is advantageous to combine 
observations from different nodes to increase the resource 
efficiency. This process reduces not only the header 
overhead, but also the data itself can be compacted as it 
contains partly the same information. 

Although this combining can be implemented by explicitly 
selecting a cluster head [3], we present a scheme that is 
more robust to random node failures. First note that sensor 
nodes that are triggered by the same event, are typically 
located in the same vicinity. The resulting cloud of 
activated nodes is also in close communication proximity. 
The routes from these nodes to the user merge early on [7]. 
Nodes that have multiple streams flowing through them 
can create a Data Combining Entity (DCE), which takes 
care of the data compaction. Simulations have shown that 
the DCEs are located inside or very close to this cloud of 
activated nodes. 

This scheme is highly robust. When a node with a DCE 
dies, the packets automatically take an alternative route 
and pass through another node that can create a new DCE. 

 

2. Simulations 

Figure 4 depicts the effects of our DCE-based data 
compaction on the total energy consumption. The nodes in 
this simulation are distributed randomly over a rectangular 
area with a constant width of 32 m and a linearly 
increasing length B. The radio transmission range R is 20 
m and the average node density is kept constant at 10-2/m2. 
The nodes at the top of this area sense a target and notify a 
user that is located at the bottom end (the transmission of 
one packet takes 5.76 ∝J). For our numerical results, we 
assume that a packet that is combined with another one can 

be compressed to 60% of its original size. We consider 3 
distinct cases: without DCE, with at most one DCE (a 
compression bit in the packet header signals if the packet 
has been compressed already) on each route to the user and 
with no restrictions on the number of DCEs. The reduction 
in energy consumption is as expected (up to a factor 2 to 
3), linearly proportional to the number of bits sent. 
 

 

 

 

 

 

 

 

 

 

Figure 4: Energy comparison for DCE 
 

 

 

 

 

 

 

 

 

 

Figure 5: Delay comparison for DCE 

 

The flip side is the average delay per packet, which is 
presented in figure 5. Since DCEs have to buffer data for a 
while, the packet delay will increase with the number of 
combining stages applied. Whether or not this is 
acceptable depends on the application. 

 

V. NETWORK TRAFFIC SPREADING 

1. Spreading Techniques 

Stochastic Scheme: Using a rationale similar to the one of 
[9], each node can select the next hop in a stochastic 
fashion. More specifically, when there are two or more 
next hops with the same lowest gradient, a random one is 
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chosen. This does not increase the length of the path 
followed, but nonetheless contributes to spreading the 
network traffic. 

Energy-based Scheme: When a node detects that its 
energy reserve has dropped below a certain threshold (50% 
in our simulations), it discourages others from sending 
data to it by increasing its height. This may change a 
neighbor’s height (since a node’s height is one more than 
that of its lowest neighbor). It in turn informs other nodes 
and these updates are propagated as far as is needed to 
keep all the gradients consistent.  

Stream-based Scheme: The idea is to divert new streams 
away from nodes that are currently part of the path of other 
streams. A node that receives packets tells all its neighbors 
except to the one from where the stream originates, that its 
height has increased. Again, other nodes must make sure 
the gradients remain consistent. As a result of this scheme, 
the original stream is unaffected, since those nodes have 
not updated the height of the next hop. New streams of 
packets, however, will take other paths as the height of the 
nodes on the first path has apparently increased. 

 

2. Simulations 

 

 

 

 

 

 

 

 

Figure 6: Wireless sensor network topology 

 

Scenario 1: Nodes A and B  (see figure 6) detect a 
different target and send packets to the user at regular 
intervals. After generating 100 packets each (this takes 
11.8 seconds), these targets disappear and both nodes 
become inactive again. At this time, no node has been 
drained yet completely and the network connectivity is still 
fully intact. We have assumed a node has only 0.76 mJ of 
energy at its disposal (which is enough to send about 140 
packets). The results can readily be scaled towards more 
realistic scenarios. Figure 7 shows the evolution of ERMS as 
a function of time, for 5 different schemes. The 
unenhanced GBR is called ‘standard’. Besides the three 
schemes discussed in V.1, we have also studied a 
combination of the stochastic and energy-based one.  

 

 

 

 

 

 

 

 

 
 

Figure 7: ERMS for scenario 1 

 

It is clear that the stream-based scheme indeed spreads the 
traffic more uniformly over the network. As soon as the 
energy of some nodes drops below 50%, the energy-based 
scheme kicks in. The stochastic routing provides an 
improvement both on top of the normal GBR and on top of 
the energy-based scheme.  

 

 

 

 

 

 

 

 

 

 

Figure 8: Energy histogram after 6 seconds 

 

To verify that the ERMS captures the relevant information, 
figure 8 shows the energy histogram for the standard and 
the stream-based scheme after 7 seconds. It is clear that 
spreading balances the energy consumption better. 

 Finally, we would like to show that the improved energy 
histogram is able to extend the network lifetime for a 
particular future scenario, although this does not prove 
anything about other possible futures. After 11.8 seconds 
node C starts forwarding packets to the user. Table 1 
shows that the schemes that resulted in better traffic 
spreading also increase total traffic that reaches the user. 
We have verified that the time the network remains intact 
is increased by 90% when using the stream-based scheme. 
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Scheme Packets received 
Standard 127 
Stochastic 133 
Energy-based 160 
Stochastic energy-based 161 
Stream-based 175 

Table 1: Packets received for scenario 1 

 

Scenario 2: Nodes D and E (figure 6) each send 100 
packets to the user in 11.8 s.  Figure 9 illustrates that our 
traffic spreading schemes again result in a more uniform 
utilization of the network resources. 

 

 

 

 

 

 

 

 

 

 

Figure 9: ERMS for scenario 2 

 

As before, we investigate one particular future activity 
scenario: node C becomes active after 11.8 seconds. From 
table 2, we conclude that spreading the network traffic has 
a negative effect as fewer packets are received! This is 
because the route taken by the standard GBR protocol 
avoids bottleneck node F. On the other hand, preading the 
traffic of D and E diverts some packets via F and therefore 
already partly drain this node before C can use it. This 
illustrates that spreading might increase the lifetime, 
although this does improve all possible futures. We 
observe however that the problems in this case are largely 
due to the fact that node F is critical as it is the only 
gateway to an entire subnet. Enhanced spreading 
techniques should therefore try to avoid critical nodes.  
 

Scheme Packets received 
Standard 217 
Stochastic 211 
Energy-based 193 
Stochastic energy-based 193 
Stream-based 176 

Table 2: Packets received for scenario 2 

VI. CONCLUSIONS 

In this paper we have argued that optimal routing in sensor 
networks is infeasible. We have proposed a practical 
guideline that advocates a uniform resource utilization, 
which can be visualized by the energy histogram. We 
acknowledge however that this is only a first cut at 
tackling this complicated issue. For example, exceptions 
must be made when nodes are critical in the overall 
network connectivity. We also propose a number of 
practical algorithms that are inspired by this concept. Our 
DCE combining scheme reduces the overall energy, while 
our spreading approaches aim at distributing the traffic in a 
more balanced way. We note that although we have started 
from GBR, our basic ideas and techniques should be able 
to enhance other routing protocols as well. 
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Abstract-- Technological advances have spurred the development of ad-hoc networks comprised of 

numerous wireless sensor nodes.  The vast majority of data that needs to transverse the sensor network 

consists of only a few bytes, including all network and application layer identifiers. Therefore, MAC 

addresses, which are vital in a shared medium, present too much overhead, particularly because they are 

traditionally unique fixed length IDs. To tackle this overhead, we propose a new dynamic MAC addressing 

scheme for ad-hoc sensor nets that exploits spatial reuse. A distributed algorithm that can tolerate 

unidirectional links, assigns the addresses. In addition, we present a variable length address representation, 

based on prefix coding. Our dynamic addressing scheme scales almost perfectly with the network size due 

to its distributed assignment algorithm and the variable length address representation, rendering it well 

suited for sensor networks with thousands or millions of nodes. 

 

I. INTRODUCTION 

Propelled by the trend towards miniaturization, wireless sensor nodes have been developed, equipped with integrated sensing 

capabilities, signal processing and radio communications [1][2][3]. Thousands or even millions of these nodes are networked 

together in an ad-hoc fashion, sense their surroundings and coordinate amongst each other through short-range low-power 

wireless transceivers. These nodes could be dropped on a battlefield or other inhospitable terrain and form an ad-hoc surveillance 

network [2][4]. Others envision networked sensors to monitor factory and office conditions or even wildlife [1][3]. It is well 

recognized that most sensor networks (like the above examples) consist out of immobile nodes [2][4][5][6].  Although it is 

possible to design networks with mobile sensors, we explicitly focus on the dominant subclass of node immobile sensor net.  

Because of their required unobtrusiveness for most applications, the sensor nodes have a small form-factor and rely solely on 

battery energy. As it is typically impossible to replace the batteries in the operating scenarios described before, low energy 

consumption is critical [2][3][4][5][6]. When networking these nodes together, the effects of this requirement ripple through the 

entire system, from data generation to communications and protocols. Radio communications, for example, have to be restricted 

in range and therefore are multi-hop in nature [2][6].  

 

A crucial issue regarding energy efficiency is the observation that every bit transmitted takes a bite out of the node’s lifetime 

[6][9]. We will show in section II that MAC addresses contribute considerably to the header overhead in data packets.  In this 

Distributed Assignment of Encoded MAC 
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paper, we focus on the issue of reducing the size of MAC addresses in wireless sensor networks, translating directly in energy 

savings for data transmissions. Our distributed addressing scheme, based on spatial reuse and encoded address 

representation, reduces the MAC address size by a factor 3 to 6.  Furthermore, it scales extremely well with the network size, 

and as such is resilient to varying or unknown network sizes and densities. 

 

II. THE USE OF ADDRESSES 

1. MAC and Network Address 

Before delving into our addressing scheme, we first turn the reader’s attention to the role of MAC addresses. The distinction 

between MAC and network layer addresses is well understood for networks such as the Internet. However, in wireless ad-hoc 

networks this distinction is not as crisp and often both types of addresses are condensed into one unique identifier that is used by 

routing, link layer and application layer protocols alike [18][6].  Consider the example in figure 1a where a packet needs to be 

routed from A to G via the multi-hop path A-B-D-F-G. The letters represent the network layer addresses of the nodes. In sensor 

networks, routing state is typically kept in the nodes [2][6][25]. When node D on the path forwards the packet to F it needs to 

include in the header both the final destination G and the next hop F.  The first address, which serves as a network address, is 

needed for F to figure out the next hop to the final destination. It is clear that the network addresses need to be network wide 

unique to be able to identify all possible destinations. The second address, which serves the purpose of a MAC address, is 

needed because B, C and E have to know that they are not the intended receivers. 

 

The MAC addresses, however, need not be network wide unique! We can use the MAC addresses represented by the numbers 

in figure 1b (the network address of each node is still the one in figure 1a), where addresses 0 and 3 have been reused. Node D 

can use MAC address 0 to identify the next-hop receiver and network address G for the final destination. As all neighbors of node 

D have a distinct MAC address, no confusion arises. The reason is that the functionality of the MAC address is restricted to the 

direct transmission neighborhood of a node, allowing careful spatial reuse. Spatial reuse leads to a decrease in number of distinct 

addresses used, which can therefore represented by a smaller number of bits. 

 

 

 

 

 

Figure 1: Decoupling address functionality, (a) network address and (b) MAC address 
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2. Naming and Addressing 

In traditional networks, an ID based name identifies the destination. This name is then mapped onto the network address, which 

is used for routing. On the level of the individual hop, the MAC address identifies the next hop receiver.  However, in sensor 

networks typical queries are not ‘what is the temperature of node #27563’ or ‘is there a rhino near node #85396’, but rather ‘where 

is the temperature higher than 60 degrees’ or  ‘notify me of any big animals in the south-east quadrant’. As such, attribute based 

naming schemes replace the traditional ID based ones [6][7]. Furthermore, the upfront translation from the name to the network 

address is omitted in favor of a lazy resolution, and the routing functionality is for a large part based directly on attributes such as 

location [8][11]. The reason for this approach is energy efficiency, as more common attributes can be coded in a small number of 

bits. Typical attributes are ‘all nodes in this geographic area’ (traffic to the nodes) or ‘the nearest gateway’  (traffic from the nodes). 

Each node is still equipped with a unique network address, but only very rarely will this be used for routing (exceptions are for 

administrative and diagnostic purposes) [2][6]. Furthermore, the majority of data traffic flows from sensor nodes to ‘data sinks’ [6], 

which typically are specialized gateway nodes that forward data to the end-users [2].  A large fraction of sensor network traffic 

therefore has the routing attribute ‘to the nearest gateway’, which can be encoded very efficiently as a single bit ‘0’ (while the less 

common attributes are encoded with ‘1’ followed by further denotation).  As a result, the dominant core network traffic will carry 

only a 1-bit or very short name attribute as a replacement of a network address.  

 

3. MAC Address Overhead 

Despite the attribute based naming, MAC addresses are still required in sensor networks. Assume that in figure 1 a packet 

needs to be routed from node A to the east-most side of the network. A possible routing protocol could be that a node forwards 

packets to all nodes that are in the target direction ±45 degrees. When node D forwards the packet it includes the attribute ‘east’ 

as a replacement of the network address. However, it also has to include its MAC address 2, such that E knows the sender is D 

(in which case it has to forward the packet) and not F (in which case it would have had to drop the packet). We have assumed that 

each node knows the location of its neighbor through a location discovery protocol. Many other alternatives can be conceived, but 

they all require the MAC address of sender or receiver or both to be transmitted.  This observation holds true not only for 

contention based medium access (with or without paging channel), but also for broadcast TDMA [10][11].  Also note that random 

identifiers [9] cannot serve the purpose of MAC addresses, as they do not guarantee the absence of collisions. 

 

Furthermore, it has been recognized that forwarding the raw sensor data to the end-user is not a viable solution [2]. In order to 

conserve network resources, nodes process data locally, coordinate amongst neighbors and forward only the aggregated data or 

decision information [4]. Consequently, the amount of data involved in network scale communication is typically in the order of 8 to 

16 bits per packet [2][9]. Considering the extremely small amount of application data and the compact attribute names, the 
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overhead of the unique node ID as a MAC address would be prohibitive. For a wireless sensor network of 10,000 nodes, this 

would mean that a network wide unique MAC address requires 14 bits, which is typically around half the total packet size. A 

globally unique MAC address (such as an Ethernet address) would be even more overkill. As every bit transmitted reduces the 

lifetime of a sensor node, it is crucial to limit the packet size to an absolute minimum [9] and the goal of our research is to reduce 

this MAC overhead. As we have argued in figure 1, MAC addresses only need to be unique in the transmission neighborhood 

of a node and can be spatially reused.  In the remainder of this paper, we will use the term ‘address’ to denote the MAC address. 

 

4. Related Work 

Other researchers have explored the idea of spatially reusing addresses. The scheme in [12] dynamically assigns addresses in 

a cellular LAN scenario. Our work does not rely on a centralized controller, which makes it more scalable and robust in terms of 

node failures. Related, although not identical, assignment problems have been studied for TDMA, FDMA and CDMA.  In [13] a 

unified framework is presented that encompasses all assignment problems, including ours, but the specific constraints of address 

reuse are not discussed. Algorithms to solve the distributed assignment for TDMA [14][15] or CDMA [16][17] can be extended for 

address assignment, although they do not consider unidirectional links (which is an important issue). Some of them also assume 

that the network has a stationary topology at the start of the protocol, which is not the case in sensor networks. The most 

important difference with all the prior work on assignment algorithms is that added benefit can be found in encoding the 

assignment, which leverages the fact that not all addresses are used equally often. There is no analogy to this in TDMA, FDMA or 

CDMA. The target in address assignment is therefore not simply using as few addresses as possible, but also reuse the same 

ones as often as possible. We will explain this in more detail in section V. 

   

III. ADDRESS REUSE CONSTRAINTS 

In this section, we explore the constraints that govern the address assignment. It is assumed each node has a (network wide) 

unique ID incorporated in it and is equipped with a low-power transceiver with a bounded transmission range, typically in the order 

of a few tens of meters [10][11][18][19].  Furthermore, this transmission range of the radios in the different nodes may not be 

exactly the same due to variations in the physical device implementation as well as in the wireless propagation environment. As a 

consequence, communication links between two nodes are not necessarily bi-directional. Any algorithm we devise must be able to 

cope with both unidirectional and bi-directional links in order to be useful in real life scenarios. 

  

In addition, we opt for a distributed address assignment algorithm as the network wide communication needed for a centralized 

algorithm comes at an extensive overall energy cost, especially when the number of sensor nodes is large. Moreover, the network 

topology is not perfectly constant. During deployment, the nodes typically boot independently and can remain inactive for a 
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substantial amount of time. Furthermore, they can fail when they run out of battery or are physically destroyed. The network has to 

remain operational during this entire period. It is therefore imperative that the address assignment algorithm quickly acquires a 

valid solution that tracks the topology changes. We call this property additive convergence. A centralized algorithm would require 

global updates, which are too costly. Only a distributed algorithm is a viable option.  

 

Figure 2 depicts a node A and all its neighbors. We call nodes that can both receive from and send to A bi-directional neighbors 

(in this case nodes B and C). Nodes that can only receive from A are called out-neighbors (D and E), while those that can only 

send to A are called in-neighbors (G and F).  When a node has a packet to transmit, each neighbor has to be able to figure out 

whether or not it is the intended receiver. Intuitively, this means that all bi-directional and out-neighbors need to have a different 

address. However, in a distributed algorithm this condition is impractical. From figure 2, it is clear that node A has no direct means 

of gathering information on the addresses that D and E choose. It does not even know of their existence!  

 

 

 

 

 

 

Figure 2: Address constraints for bi- and unidirectional links 

 

We can tackle this issue by restricting the data communication to the bi-directional links only. In this case, A can only forward 

data to B or C. This restriction makes sense for typical higher layer protocols that rely on acknowledgments, path reversals or 

otherwise assume bi-directional links. The intended receiving nodes, B and C, need distinct addresses of course.  Nodes D and E 

still overhear the transmission, but they are never the intended receiver. Of course, both D and E need to be able to identify the 

link as being one of their unidirectional links, or equivalently whether this transmission is from one of their in-neighbors or from one 

of their bi-directional neighbors. When the sender address is included in the packet as well, the fact that they hear the 

transmission completely identifies the link. Knowing that they only have a unidirectional link to A, they can conclude they are not 

the intended receivers. We assume that each node has established its bi-directional neighbors through a discovery protocol prior 

to the address assignment. The resulting constraints are given by lemma 1. They specify a valid address assignment that can be 

achieved by a distributed algorithm in the presence of unidirectional links. These constraints are new to the best of our knowledge 

and therefore define a new assignment problem. 
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Lemma 1: When the normal-mode data communication of node A is restricted to its bi-directional neighbors, a 

valid assignment of addresses is such that all bi-directional neighbors have distinct addresses and that all in-

neighbors have addresses different from those of the bi-directional neighbors, for any node A. 

 

The first part of lemma 1 ensures that B and C have different addresses, since they can be intended receivers of node A. The 

second part of this lemma tells that F and G have addresses different from those of B and C, although the addresses of F and G 

themselves do not need to be different. As a consequence, node A can distinguish between its senders with which it has a 

unidirectional link and with which it has a bi-directional link.  Although node A cannot send information back to F or G, it can 

instruct B and C to choose addresses that do not conflict with those of F or G.  

 

IV. DISTRIBUTED ASSIGNMENT ALGORITHM 

1. Algorithm Description 

The pseudo-code of our distributed assignment algorithm is presented in figure 3. Its core operation is based on a periodic 

broadcast packet: broadcast_pkt (line 7). This packet contains the node’s neighborhood information: its own address and those 

of its neighbors it is has knowledge of (i.e. bi-directional and in-neighbors). The addresses of these neighbors are obtained by 

listening to their periodic broadcasts. Each node therefore obtains information on its one-hop and two-hop neighbors, which is 

stored in the structure constraints (line 10). This information is “soft-state” and a timeout invalidates the entry for a particular 

neighbor if that node is not heard from for a while (line 6). Going back to figure 2, node B can learn about the addresses of C, F, 

and G by listening to the periodic broadcasts of A. One cycle after a node boots up, it chooses an address that satisfies lemma 1 

based on the information in constraints (line 5). A detailed description of how valid address is chosen will be discussed in 

subsection V.2. 

 

Since periodic transmissions are also needed for connectivity discovery/updating and for other network maintenance and 

management protocols, the neighborhood information could be piggybacked onto them with only a few bits added [2].  

Furthermore, the period of the broadcast (which we call the cycle time) can be increased once the transient boot-up phase is over 

and made comparable to the expected time constant of the network dynamics (i.e. frequency of node failures, etc.). As an 

alternative to the (adaptive) periodic broadcasts, we can opt for a reactive scheme with explicit request() packets to solicit a 

broadcast_pkt  from neighboring nodes.  Now, the nodes send out this request when entering the network, or when suspecting 

changes in topology due to nodes failures (through indications from higher layers).  Which of these options is the best depends on 

the specific network dynamics and deployment scenario. In any case, the expected number of broadcast_pkt over the lifetime of 

a node is rather small. We will discuss the tradeoff between the protocol overhead and the savings in address size in section V.  
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 1 set(timer); 
 

 2 while (1): wait for event 
 

 3  case event == timer 
 

 4    if (no_addr())  
 5      choose_addr(constraints); 

 6    check_timeout(constraints); 

 7    send(broadcast_pkt); 

 8    set(timer); 
 

 9  case event == broadcast_pkt 
 

10    update(constraints);  

11    if (addr_conflict(constraints)) 
12       send(conflict_pkt); 
 

13  case event == conflict_pkt 
 

14    update(constraints); 

15    choose_addr(constraints); 

16    send(broadcast_pkt); 

  

17 end while 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Distributed address assignment algorithm 

  

At each instant in time, the network consisting of the active nodes with an address has a valid assignment and is therefore 

operational. This algorithm therefore satisfies the property of additive convergence. The final address selection corresponds to the 

centralized scheme with random ordering presented in [12].  However, the additive convergence property also requires extra 

provisions in the algorithm. Even though the active nodes have chosen a valid, i.e. non-conflicting, address, the waking up of a 

new node, may invalidate the existing address assignment as illustrated in figure 4.  

 

At first, all active nodes have chosen a valid address based on the algorithm we have just explained (figure 4a). When the dark 

node boots up (figure 4b), its mere presence causes a new address conflict between the nodes with address 0. The new node 

detects this problem and instructs one of these two nodes to choose another address (in this example, address 4). Lines 11 to 16 

in the algorithm are devoted to the detection and resolution of such problems. When a node, in the above example the dark node, 

detects an address conflict while receiving a broadcast_pkt, it orders one of the nodes with a bi-directional link to choose another 

address by sending a conflict_pkt packet. If the conflict is simply between in-neighbors, no action is taken since it is both not 

necessary (see lemma 1) and impossible to correct. When receiving this conflict_pkt packet, a node chooses a new address the 

same way it did before, now based on updated constraints information. A new broadcast_pkt is transmitted to inform the other 

nodes that a new address was chosen and the old one is freed up.  
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Figure 4: Address conflicts due to a new node  

 

2. Packet Formats 

Finally, we present the packet formats we propose to use. Figure 5a illustrates the structure of a broadcast_pkt. The first bit 

identifies the packet as being a control message of our protocol. The second bit marks it as a periodic broadcast message, 

thereby fixing the type of fields that follow. The next two fields contain the unique node ID and address of the sender. The ‘Bitmap’ 

encodes the addresses of the sender’s neighbors. Although we will describe how a specific address is chosen amongst the valid 

ones in the section V, for now it suffices to know that a node selects the lowest address that does not collide. As a result, the 

addresses of the neighbors are more likely to be towards the lower end of the address range. The bitmap field in figure 5b exploits 

this property, where a ‘1’ at position x indicates that a neighbor has picked this address. The lower Lb addresses are encoded this 

way. They are followed by a single bit indicating whether another set of Lb addresses is appended (‘1’) or not (‘0’).  We choose Lb 

equal to 16 in our implementation. Figure 6 illustrates the structure of the conflict message. Again, the first two bits identify the 

packet as being a control packet and a conflict message respectively. The third bit is set to ‘0’ if the packet does not contain the 

address of the sender (figure 6a), which occurs when it has not chosen an address yet. Since these messages are sent to a 

particular receiver, the ID of this receiver is needed as well. 

 

 

(a)       (b) 

Figure 5: (a) Broadcast message and (b) bitmap field 

 

 

(a)       (b) 

Figure 6: Conflict message 
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V. ADDRESS SELECTION AND REPRESENTATION 

1. Address Representation 

Thus far we have only specified how a node learns about the addresses it may not pick, but we have not detailed yet how it 

chooses an address from the remaining ones.  In fact, this choice is tightly linked to the way we propose to represent the 

addresses in data packets. Therefore, we discuss our address representation first. For now, it suffices to observe that the number 

of addresses needed is related to the number of neighbors of a node. This directly follows from the formulation of lemma 1. 

 

Traditionally, protocols represent addresses using a fixed length address field, such as in Ethernet or IP. We denote the total 

number of sensor nodes in the area under scrutiny by N. The algorithm we have presented permits reuse of addresses and 

therefore reduces the maximum address needed from N to a smaller number. The highest address any node in the sensor field 

ends up with, clearly determines the number of bits needed.  This typically corresponds to a node that has a large number of 

neighbors, or alternatively where locally the network density is high. Even when we know the approximate network density, it is 

hard to predict the maximum address needed. Global communication to determine the maximum address is undesirable. 

Therefore, enough safety margin needs to be provided to account for rare but not impossible cases of high local densities. When 

the average network density is not known a priori, the situation is even more unfavorable. 

 

We propose a new alternative way of representing an address. Our scheme, which we call encoded address representation, 

has the advantage that it typically requires less bits then the fixed representation. Furthermore, it exhibits graceful scaling 

properties with network density and is perfectly independent of network size (i.e. scales perfectly with N). Our encoded scheme 

does not transmit the address itself, but a codeword representing the actual address. The codeword itself is prefix coded, which 

means that the end can be identified as it is encountered [20]. Although the length of the codeword is variable, it can uniquely 

be deduced from the codeword itself. More specifically, we utilize the well-known Huffman coding. When for each address the 

probability of occurrence is known, this scheme results in a minimum average codeword length.  In subsequent data packets, 

instead of sending the address, we use the codeword instead. The address selection protocol uses regular integer numbers as 

addresses. However, in data transmissions, the codewords can perfectly assume the role of addresses.  

 

2. Address Selection 

From the previous discussion, it is apparent that it is beneficial to reuse addresses as often as possible, such that their 

probability of occurrence is higher. Although it does not really matter which address is used the most, from a practical standpoint it 

is easiest to try to reuse the lower addresses as frequently as possible. This corresponds perfectly to intuition. Next, we illustrate 

the address selection for an example setup with a specific node density. In section VI, we will discuss how the performance 
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depends on the density and other operation parameters. In figure 7, the continuous solid curve, labeled ‘incremental’, corresponds 

to the algorithm of figure 3 where the lowest non-conflicting address is chosen in the function choose_addr(). It illustrates the 

frequency at which each address was eventually assigned. These results were obtained through simulations written on the Parsec 

platform, an event-driven parallel simulation language [21].  We assume N nodes are distributed randomly over a square field of 

size L x L and each of them has a transmission range R. For a uniform network density, the average connectivity depends only on 

the average number of neighbors of a node, denoted by parameter . . 

 (1) 

 

 

Since the address assignment depends solely on the network connectivity, it is logical that its performance depends only on .  

and not on N, R and L separately. We have verified this statement through simulations. In the example of figure 7, N = 500, L2 = 

50,000 m2 and R = 17.84 m (which is a reasonable value for sensor nets [18]). This results in .  = 10. A node boots at a random 

time in an interval of 10 seconds. The initial broadcast cycle is set to 10 seconds. Once the network has booted up, the period can 

be extended or we can switch to a reactive scheme, without any noticeable influence on the performance. The results are 

averaged over 500 simulation runs. 

 

 

 

 

 

 

 

 

 

 

Figure 7: Example of address selection frequency 

 

Based on this ‘incremental’ curve, the optimal encoded address format can be derived through Huffman coding. The results are 

listed in table 1. For addresses higher than 23, the codeword can be obtained from the codeword of the previous address by 

replacing the ending 0 by 10. The average encoded address, which is calculated by multiplying the address size with its frequency 

of occurrence, requires only 4.41 bits. The fixed addressing scheme would have resulted in at least 6 bits, since the maximum 

address encountered was 34.   

Address 

Frequency 

2
2

R
L
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Address 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

# bits 4 4 4 4 4 4 4 4 4 4 4 4 5 5 

Code 0000 000

1 

0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100:0 1100:1 

 

Address 14 15 16 17 18 19 20 21 22 23 

# bits 5 5 5 5 6 6 7 7 7 8 

Code 1101:0 1101:1 1110:0 1110:1 1111:0:0 1111:0:1 1111:1:00 1111:1:01 1111:1:10 1111:1:11:0 
 

Table 1: Example of address encoding corresponding to figure 7 

 

 

 

 

 

 

 

 

 

Upon further inspection of table 1, we notice that several addresses require the same number of code bits, what we define as 

being in the same range (e.g. addresses 0 to 11 are encoded in 4 bits).  From a practical perspective, all of these addresses are 

equally efficient. Instead of choosing the lowest non-conflicting address in choose_addr(), selecting a random address in the 

lowest range possible results in the same average code length. The dashed curve (called ‘range based’) in figure 7 illustrates this 

alternative. We see indeed that all addresses that result in the same number of bits are selected equally often. The average 

dynamic address size is still 4.41 bits. 

 

Furthermore, our simulations confirm the intuition that the ‘range based’ curve can be derived from the ‘incremental’ one, by 

averaging the probability of all addresses in the respective range. For example, the probability of the first twelve addresses for the 

‘range based’ scheme is equal to one twelfth of the sum of the probabilities of addresses 0 to 11 in the incremental scheme. Even 

though in practice addresses are picked randomly in a range, we can thus perfectly analyze the performance in number of 

address bits needed by investigating the incremental scheme. In the remainder of this paper, we therefore focus on the 

distribution of addresses chosen and need to consider only the incremental case since it encompasses the range based one 

as well. 

 

3. Algorithm Overhead 

Although the average address size is the same for the incremental and range based address selection, there is a clear 

advantage in control overhead as illustrated in table 2. This table lists for both curves of figure 7 the average number of packets 

and bits sent per node in the send() statements of lines 12 and 16. We do not include the periodic broadcasts, since they add a 

fixed overhead, which depends on the period and on the potential for piggybacking. For this example, the encoding of the addr 

field of the control messages (see figures 5 and 6) was according to table 1. The ID field, on the other hand, depends on the 

anticipated network size. In our simulations, we allocated 14 bits. 
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conflict_pkt broadcast_pkt   

Packets Bits Packets Bits 

Incremental 0.546 25.34 0.546 16.19 

Range based 0.319 18.66 0.319 12.11 
 

Table 2: Control overhead per node 

 

We can use this information to evaluate the overall tradeoff between protocol overhead and savings in address size. The 

protocol overhead expressed in number of bits is denoted as BO. From table 2, we can derive that for the range-based scheme, 

BO is given by (2). In this expression, M is the number of periodic broadcasts over the entire lifetime of a node (the packet size is 

derived from our simulations, which incorporate piggybacking). We also know that the number of bits saved BS is equal to (3), 

compared to a network wide unique MAC address of 14 bits. Here, P is the total number of data packets sent by a node and the 

factor 2 accounts for the fact that both the sender and receiver MAC address is incorporated in the packets. 

 (2) 

 (3) 

Our dynamic addressing scheme results in an overall decrease in number of bits sent if BO < BS or equivalently when: 

 (4) 

Although some nodes might not send any traffic at all, e.g. when there is absolutely no activity to report in their sector, these 

nodes are not critical for the overall network lifetime anyway. It is the nodes that forward a lot of traffic that are the critical ones, 

and for these (4) is likely to be satisfied. Further note that only the initial cycle is short. Once the cycle is matched to the network 

dynamics or is switched to the reactive mode, the number of broadcast packets is limited.  The exact value of M strongly depends 

on the network deployment and sensing scenario, as node failures and reactivation follow directly from the network traffic patterns, 

routing strategies and overall network management. Our simulations show that M is typically to the order of 20-50. We therefore 

expect that condition (4) will be satisfied for almost all sensor networks. 

 

We would like to emphasize that the numerical results of figure 7, table 2 and the analysis above are bound to the settings in 

this particular example. As we will illustrate in section VI, other network densities result in different values. Since the address 

encoding of table 1 is derived from figure 7, it is thus optimized for these particular settings. Other network densities will have 

another optimal address encoding. For practical applications, the network density will have to be estimated, such that a good 

encoding can be selected. We will revisit this issue in section VI. 
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4. Computational requirements 

A possible drawback of our encoded address scheme is the fact that codewords instead of addresses are transmitted. During 

data transmission, the sender needs to know the codeword of the intended receiver, which can be stored in a table. At the 

receiver side, some more work is needed since the encoded addresses do not have a fixed length. In fact, the codewords have to 

be stepped through bit by bit in order to detect their end.  However, this overhead in header processing is negligible compared to 

the savings in transmission energy. 

 

Communication 

RFM 2.4 kbps over 20 m 0.18 ∝J / bit 

RFM 2.4 kbps over 80 m 0.94 ∝J / bit 

Conexant RDSSS9M 100 kbps over 100 m  1 ∝J / bit 

Computation 

StrongARM SA-1100 (150 MIPS, 1.5 V) 1.5 nJ/instr 

StrongARM SA-1100 (250 MIPS, 2.0 V) 2.2 nJ/instr 
 

Table 3: Communication and computation costs 

 

Table 3 illustrates this claim by comparing the communication cost (with the low-power RFM [22] or Conexant [18] radio) versus 

the computation cost (on a low-power StrongARM SA-1100 embedded processor [23]). For these devices, which are believed 

representative for sensor network and are used by various research groups working in this field [18][19], the cost of transmitting 1 

bit is equivalent to 80 to 600 instructions. The savings therefore clearly outweigh the cost of Huffman decoding (which should not 

take more than a few tens of instructions on average). 

 

VI. PROTOCOL ANALYSIS 

1. Influence of Network Density 

To evaluate the influence of network density, figure 8 depicts the performance of our algorithm for different values of .  

assuming a uniform node density. It is apparent that the less connected the network is (lower . ), the more frequent the lower 

addresses can be used. This is intuitively clear as fewer neighbors cause less address conflicts. We have also evaluated the 

memory requirements of our algorithm for different values of . . Since the required amount of storage in a node depends on its 

number of neighbors, which varies between nodes, we pick a dynamic memory allocation scheme. Table 4 lists the required 

storage for both the average and worst case (for N = 500 nodes, but these values are almost independent of N). 
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Figure 8: Addresses chosen for different value of .  

 

 .  5 10 15 20 

 Average (bytes) 23 47 71 91 

Worst case (bytes) 68 142 217 293 
 

Table 4: Average memory requirements per node 

 

Up until now, we have always assumed a uniform node density. To illustrate that our analysis does not depend on this 

assumption, we have simulated the algorithm on a field with the non-uniform density, where nodes are randomly distributed 

according to figure 9a. The second highest level (the arms of the cross shape) corresponds to .  = 10. The spatial distribution of 

the address size, averaged over 1,500 simulation runs, is given in figure 9b. We used the address encoding of table 1. 

 

 

 

 

 

 

 

 

 

(a)       (b) 

Figure 9: Non-uniform network density 

Address 

Frequency 

X(m) 

Nodes/m2 

Y (m) X(m) 

Average address size (bits) 
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We observe that the average address size at the level with .  = 10 corresponds to 4.41 as in the uniform density case. For the 

other regions, we can look at the value of .  in the locality of a node and pick the corresponding curve from figure 8. The average 

occurrence frequency of each address together with the codeword size of that address (given in table 1) allows us to predict the 

performance of figure 9 in these other regions as well. This and other simulations we ran, show that the address size depends 

only on the density in “the locality of a node”, corresponding roughly to circle with radius 3R. 

 

Remember that the address representation of table 1 optimized for .  = 10. In the other regions with higher or lower values, this 

representation is no longer optimal. A great benefit of our encoded scheme is that it is scalable, such that all addresses can be 

represented no matter what.  However, in the case of the fixed size scheme, the address field would be selected based on the 

expected maximum value of . , with some margin. If locally the density is higher, this size can turn out to be insufficient to 

represent all addresses, causing major problems. 

  

How can our encoded dynamic addressing scheme be used in practice? Typical scenarios are likely to exhibit non-uniform 

network densities, which are sufficiently smooth (i.e. without abrupt transitions). If we are able to estimate the expected node 

densities before the network deployment, we can predict the behavior of any address encoding choice based on the curves of 

figure 8, as explained before. By taking a weighted average, we can choose the optimal encoding. If we do not have such 

reasonable estimate on the node densities, we simply guess a good encoding scheme. Any encoding, optimal or not, is always 

able to represent all possible addresses. Before deployment of the network, the encoding scheme is hard-coded into all the 

nodes, as it needs to be network wide consistent.  This option is most likely superior to executing a network wide “consensus” 

algorithm after the address selection phase. 

 

2. Random Packet Losses 

We analyze the effects of random packet losses by assuming that each packet has a probability Pdrop of not reaching a 

receiving node. This procedure models losses due to MAC congestion, problems in the wireless link (fading, shadowing, noise, 

jamming) or any other source.   

Figure 10a depicts simulation results for different loss probabilities. It is clear that packet losses up to 10% have almost no 

effect on the performance of our algorithm in terms of final addresses chosen. It is therefore very resilient against these 

degradations for typical operating conditions.  Another aspect worth investigating is the convergence time of our scheme, i.e. how 

long it takes until every node has a valid address. Simulations show that this aspect is independent of all the parameters 

discussed so far. Specifically, convergence occurs one cycle after the last node is created (in fact, each node acquires a valid 

address one cycle after its creation). However, this changes when random packet losses are included. Figure 10b plots the 

interval between the time the last node boots and the time that all nodes have acquired a valid address. 
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(a)       (b) 

Figure 10: Effects of packet losses (.  = 10) 

 

3. Unidirectionality 

As explained in section III, our algorithm is specifically designed to accommodate both unidirectional and bi-directional links. All 

simulations up until now only included bi-directional links.  Figure 11 illustrates the impact of having unidirectional links. The 

transmission range R of each node is now chosen uniformly random in an interval [R - W/2 , R + W/2]. By increasing W, the 

fraction of unidirectional links increases (from 0% to around 50% for W from 0 to 20). We observe that the performance degrades 

with increasing W. For all our simulations, we have also verified that the assigned addresses indeed satisfy lemma 1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Performance with bi- and unidirectional links (.  = 10) 
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VII. COMPARISON BETWEEN ADDRESSING SCHEMES 

1. Scalability of Address Representations 

The performance of our encoded address scheme depends on curves such as those of figure 8. Our simulations (which are not 

included here due to space limitations) show that these curves are virtually independent of the network size. The reason is the fact 

that the address assignment is basically dictated by the connectivity in the locality of the nodes.  However, edge effects change 

this statement slightly. Our simulations show, however, that the encoded address representation scales perfectly with N when 

these edge effects are disregarded.  The representation with a fixed size address field does not scale well. This is due to the 

fact that when the network size increases, it is more likely that at least one node has a higher degree (and thus needs at least that 

many addresses for its neighbors).   

 

 

 

 

 

 

 

 

 

 

Figure 12: Comparison between fixed and encoded address representation 

 

Figure 12 compares the performance of the two address representations. Both reuse addresses spatially, but the way they are 

represented differs. It is clear that the encoded scheme has superior scaling properties. Furthermore, for most of the network 

sizes of interest, the encoded scheme is preferable to the fixed size one. The steep dotted curve represents the address size 

that would be needed for a network-wide unique ID, which is clearly undesirable. 

 

2. Overall Comparison 

When comparing MAC addressing alternatives for sensor networks, scalability is a key issue, which consists of two elements: 

1. When the assignment of addresses is static (i.e. before deployment), there is no true scaling issue. Dynamic address 

assignment protocols, on the other hand, can be centralized or distributed, where only distributed ones scale well. 

Average address size (bits) 

.  =10 

.  =5 

.  =15 

.  =20 

N 
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2. The second aspect is address size. Without spatial reuse, scaling is very poor. On the other hand, scaling is perfect when 

encoding spatially reused addresses (see section VII.1). This is not true anymore when representing these addresses in a 

fixed size field.   

 

Table 5 compares different approaches for N = 10,000 and .  = 10. The ‘address selection type’ and ‘address size scalability’ 

reflect the two elements of scaling respectively. A globally unique ID would be prohibitively long (but independent of the network 

size, thus having perfect ‘address size scalability’). Alternatively, a network wide unique ID can be allocated when the network is 

deployed. This option scales only logarithmically with the network size. Our first new scheme, called fixed size dynamic, reuses 

addresses spatially, but still represents them in a fixed size field. It does not exhibit perfect address size scalability. Addresses can 

be assigned with a centralized or a distributed algorithm, where the last one is probably preferable. Our second scheme, called 

encoded dynamic, achieves perfect scaling by address encoding and its distributed nature (although in theory, a centralized 

algorithm is possible). It also results in smaller addresses for typical network setups. 

 

Scheme 
Address 

selection type 

Av. size 

(bits) 

Address size 

scalability 

Globally unique Manufacturing 128  + 

Network wide unique Deployment 14 − 

Fixed size dynamic  Centr. / Distr. 4.7 ± 

Encoded dynamic Distributed 4.4  + 
 

Table 5: Comparison of addressing schemes 

 

 

VIII. CONCLUSIONS 

In sensor networks, the dominant traffic typically consists of packets with a small payload and a short destination name 

attribute. In this case, MAC addresses contribute a considerable packet header overhead. However, they cannot be simply 

omitted, as their functionality is needed to discern intended from non-intended receivers. We have tackled to the problem of 

limiting this MAC address overhead, thereby reducing the number of bits that need to be transmitted. As every bit saved relaxes 

the demands on the node’s energy resources, this scheme eventually targets increasing the network operation lifetime. We 

propose a dynamic addressing scheme, which is viable when the network dynamism is low. This is the case for sensor networks 

with immobile nodes, but where node failures can occur. In this paper, we have presented an address assignment protocol that 

1. is fully distributed, 

2. spatially reuses addresses, 

3. encodes the addresses using prefix codes. 

 

Our schemes 
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Our scheme scales very well with the size of the network, because of both the distributed nature of the algorithm (which relies 

only on local message exchanges) and the address encoding. Both the scalability and small average address size make our 

scheme compare favorably to other options. We have also illustrated that the protocol is robust in the presence of packet losses 

and unidirectional links. 

 

In our future work, we will look at the relationship between encoded addressing and header compression [24]. Header 

compression has thus far been considered only for point-to-point links, but to be useful for MAC addresses we need to take into 

account the inherent broadcast functionality. In this case, loosing synchronization is compounded between the different receivers, 

thereby limiting the compression gain. In any case, header compression is orthogonal to our scheme and their interaction seems 

an interesting topic for future research. 
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INTRODUCTION 
Self-configuring wireless sensor networks can be 

invaluable in many civil and military applications for 
collecting, processing, and disseminating wide ranges of 
complex environmental data. They have therefore, 
attracted considerable research attention in the last few 
years. The WINS [1] and SmartDust [2] projects for 
instance, aim to integrate sensing, computing, and 
wireless communication capabilities into a small form 
factor to enable low-cost production of these tiny nodes 
in large numbers. Several other groups are investigating 
efficient hardware/software system architectures, signal 
processing algorithms, and network protocols for 
wireless sensor networks [3], [4], [5]. 

Sensor nodes are battery-driven, and hence operate on 
an extremely frugal energy budget. Further, they must 
have a lifetime on the order of months to years, since 
battery replacement is not an option for networks with 
thousands of physically embedded nodes. In some cases, 
these networks may be required to operate solely on 
energy scavenged from the environment through 
seismic, photovoltaic, or thermal conversion. This 
transforms energy consumption into the most important 
factor that determines sensor node lifetime. 

Conventional low-power design techniques [6] and 
hardware architectures only provide point solutions 
which are insufficient for these highly energy 
constrained systems. Energy optimization, in the case of 
sensor networks, is much more complex, since it 
involves not only reducing the energy consumption of a 
single sensor node, but also maximizing the lifetime of 
an entire network. The network lifetime can be 
maximized only by incorporating energy-awareness into 
every stage of wireless sensor network design and 
operation, thus empowering the system with the ability 
to make dynamic tradeoffs between energy 
consumption, system performance, and operational 
fidelity. This new networking paradigm, with its extreme 
focus on energy efficiency, poses several system and 
network design challenges that need to be overcome to 
fully realize the potential of the wireless sensor systems. 

A quite representative application in wireless sensor 
networks is event tracking, which has widespread use in 
applications such as security surveillance and wildlife 
habitat monitoring. Tracking involves a significant 
amount of collaboration between individual sensors to 
perform complex signal processing algorithms such as 
Kalman Filtering, Bayesian Data Fusion, and Coherent 
Beamforming. This collaborative signal processing 

nature of sensor networks offers significant opportunities 
for energy management. For example, just the decision 
of whether to do the collaborative signal processing at 
the user end-point or somewhere inside the network has 
significant implication on energy and lifetime. We will 
use tracking as the driver to illustrate many of the 
techniques presented in this paper. 

 
PAPER OVERVIEW 

This paper describes architectural and algorithmic 
approaches that designers can use to enhance the energy 
awareness of wireless sensor networks. The paper starts 
off with an analysis of the power consumption 
characteristics of typical sensor node architectures, and 
identifies the various factors that affect system lifetime. 
We then present a suite of techniques that perform 
aggressive energy optimization while targeting all stages 
of sensor network design, from individual nodes to the 
entire network. Maximizing network lifetime requires 
the use of a well-structured design methodology, which 
enables energy aware design, and operation of all aspects 
of the sensor network, from the underlying hardware 
platform, to the application software and network 
protocols. Adopting such a holistic approach ensures that 
energy awareness is incorporated not only into 
individual sensor nodes, but also into groups of 
communicating nodes, and the entire sensor network. By 
following an energy-aware design methodology based 
on techniques such as in this paper, designers can 
enhance network lifetime by orders of magnitude. 
 

WHERE DOES THE POWER GO? 
The first step in designing energy aware sensor 

systems involves analyzing the power dissipation 
characteristics of a wireless sensor node. Systematic 
power analysis of a sensor node is extremely important 
to identify power bottlenecks in the system, which can 
then be the target of aggressive optimization. We 
analyze two popular sensor nodes from a power 
consumption perspective, and discuss how decisions 
taken during node design can significantly impact the 
system energy consumption. 
The system architecture of a canonical wireless sensor 
node is shown in Figure 1. The node is comprised of 
four subsystems: (i) a computing subsystem consisting 
of a microprocessor or microcontroller, (ii) a 
communication subsystem consisting of a short range 
radio for wireless communication, (iii) a sensing 
subsystem that links the node to the physical world and 
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consists of a group of sensors and actuators, and (iv) a 
power supply subsystem, which houses the battery and 
the DC-DC converter, and powers the rest of the node. 
The sensor node shown in Figure 1 is representative of 
commonly used node architectures such as [1], [2]. 
 
MICRO CONTROLLER UNIT (MCU) 
Providing intelligence to the sensor node, the MCU is 
responsible for control of the sensors, and execution of 
communication protocols and signal processing 
algorithms on the gathered sensor data. Commonly used 
MCUs are Intel's StrongARM microprocessor and 
Atmel's AVR microcontroller. The power-performance 
characteristics of MCUs have been studied extensively, 
and several techniques have been proposed to estimate 
the power consumption of these embedded processors 
[7], [8]. While the choice of MCU is dictated by the 
required performance levels, it can also significantly 
impact the node's power dissipation characteristics. For 
example, the StrongARM microprocessor from Intel, 
used in high end sensor nodes, consumes around 
400mW of power while executing instructions, whereas 
the ATmega103L AVR microcontroller from Atmel 
consumes only around 16.5mW, but provides much 
lower performance. Thus, the choice of MCU should be 
dictated by the application scenario, to achieve a close 
match between the performance level offered by the 
MCU, and that demanded by the application. Further, 
MCUs usually support various operating modes, 
including Active, Idle, and Sleep modes, for power 
management purposes. Each mode is characterized by a 
different amount of power consumption. For example, 
the StrongARM consumes 50mW of power in the Idle 
mode, and just 0.16mW in the Sleep mode. However, 
transitioning between operating modes involves a power 
and latency overhead. Thus, the power consumption 
levels of the various modes, the transition costs, and the 
amount of time spent by the MCU in each mode, all 
have a significant bearing on the total energy 
consumption (battery lifetime) of the sensor node. 
 
RADIO 

The sensor node’s radio enables wireless 
communication with neighboring nodes and the outside 
world. There are several factors that affect the power 
consumption characteristics of a radio, including the 
type of modulation scheme used, data rate, transmit 
power (determined by the transmission distance), and the 
operational duty cycle. In general, radios can operate in 
four distinct modes of operation, namely Transmit, 
Receive, Idle, and Sleep modes. An important 
observation in the case of most radios is that, operating 
in Idle mode results in significantly high power 
consumption, almost equal to the power consumed in the 

Receive mode [11]. Thus, it is important to completely 
shutdown the radio rather than transitioning to Idle 
mode, when it is not transmitting or receiving data. 
Another influencing factor is that, as the radio's 
operating mode changes, the transient activity in the 
radio electronics causes a significant amount of power 
dissipation. For example, when the radio switches from 
sleep mode to transmit mode to send a packet, a 
significant amount of power is consumed for starting up 
the transmitter itself [9]. 
 
SENSORS 

Sensor transducers translate physical phenomena to 
electrical signals, and can be classified as either analog 
or digital devices depending on the type of output they 
produce. There exist a diversity of sensors that measure 
environmental parameters such as temperature, light 
intensity, sound, magnetic fields, image etc. There are 
several sources of power consumption in a sensor, 
including (i) signal sampling and conversion of physical 
signals to electrical ones, (ii) signal conditioning, and 
(iii) analog to digital conversion. Given the diversity of 
sensors there is no typical power consumption number. 
In general, however, passive sensors such as 
temperature, seismic etc., consume negligible power 
relative to other components of  sensor node. However, 
active sensors such as sonar rangers, array sensors such 
as imagers, and narrow field-of-view sensors that require 
repositioning such as cameras with pan-zoom-tilt can be 
large consumers of power. 
 
POWER ANALYSIS OF SENSOR NODES 

Table I shows the power consumption characteristics 
of Rockwell’s WINS node [10], which represents a high-
end sensor node, and is equipped with a powerful 
StrongARM SA-1100 processor from Intel, a radio 
module from Conexant Systems, and several sensors 
including acoustic and seismic ones. Table II gives the 
characteristics of the MEDUSA-II, an experimental 
sensor node developed at the Networked and Embedded 
Systems Lab, UCLA. The MEDUSA node, designed to 
be ultra low power, is a low-end sensor node similar to 
the COTS Motes developed as part of the SmartDust 
project [2]. It is equipped with an AVR microcontroller 
from ATMEL, a low-end RFM radio module, and a few 
sensors. As can be seen from the tables, the power 
dissipation characteristics of the two nodes differ 
significantly. There are several inferences that can be 
drawn from these tables: 
 

 Using low-power components and trading off 
unnecessary performance for power savings during 
node design, can have a significant impact, up to a 
few orders of magnitude. 
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 The node power consumption is strongly dependent 
on the operating modes of the components. For 
example, as Table I shows, the WINS node 
consumes only around one sixth the power when the 
MCU is in Sleep mode, than when it is in Active 
mode. 

 Due to extremely small transmission distances, the 
power consumed while receiving data can often be 
greater than the power consumed while transmitting 
packets, as is evident from Figure 2. Thus, 
conventional network protocols which usually 
assume the receive power to be negligible, are no 
longer efficient for sensor networks, and customized 
protocols which explicitly account for receive power 
have to be developed instead. 

 The power consumed by the node with the radio in 
Idle mode is approximately the same with the radio 
in Receive mode. Thus, operating the radio in Idle 
mode does not provide any advantage in terms of 
power. Previously proposed network protocols have 
often ignored this fact, leading to fallacious savings 
in power consumption, as pointed out in [11].  
Therefore, the radio should be completely shut off 
whenever possible, to obtain energy savings. 

 
BATTERY ISSUES 
The battery supplies power to the complete sensor node, 
and hence plays a vital role in determining sensor node 
lifetime. Batteries are complex devices whose operation 
depends on many factors including battery dimensions, 
type of electrode material used, and diffusion rate of the 
active materials in the electrolyte. In addition, there can 
be several non-idealities that can creep in during battery 
operation, which adversely affect system lifetime. We 
describe the various battery non-idealities, and discuss 
system level design approaches that can be used to 
prolong battery lifetime. 

  
Rated capacity effect 

The most important factor that affects battery lifetime 
is the discharge rate or the amount of current drawn from 
the battery. Every battery has a rated current capacity, 
specified by the manufacturer. Drawing higher current 
than the rated value leads to a significant reduction in 
battery life. This is because, if a high current is drawn 
from the battery, the rate at which active ingredients 
diffuse through the electrolyte falls behind the rate at 
which they are consumed at the electrodes. If the high 
discharge rate is maintained for a long time, the 
electrodes run out of active materials, resulting in battery 
death even though active ingredients are still present in 
the electrolyte. Hence, to avoid battery life degradation, 
the amount of current drawn from the battery should be 
kept under tight check. Unfortunately, depending on the 

battery type (Lithium Ion, NiMH, NiCd, Alkaline, etc.), 
the minimum required current consumption of sensor 
nodes often exceeds the rated current capacity, leading to 
sub-optimal battery lifetime. 
 
Relaxation effect 

The effect of high discharge rates can be mitigated to a 
certain extent through battery relaxation. If the discharge 
current from the battery is cut off or reduced, the 
diffusion and transport rate of active materials catches 
up with the depletion caused by the discharge. This 
phenomenon is called the relaxation effect, and enables 
the battery to recover a portion of its lost capacity. 
Battery lifetime can be significantly increased if the 
system is operated such that the current drawn from the 
battery is frequently reduced to very low values, or is 
completely shut off [12]. 
 
DC-DC CONVERTER 

The DC-DC converter is responsible for providing a 
constant supply voltage to the rest of the sensor node 
while utilizing the complete capacity of the battery. The 
efficiency factor associated with the converter plays a 
big role in determining battery lifetime [13]. A low 
efficiency factor leads to significant energy loss in the 
converter, reducing the amount of energy available to 
other sensor node components. Also, the voltage level 
across the battery terminals constantly decreases as it 
gets discharged. The converter therefore draws 
increasing amounts of current from the battery to 
maintain a constant supply voltage to the sensor node. 
As a result, the current drawn from the battery becomes 
progressively higher than the current that actually gets 
supplied to the rest of the sensor node. This leads to 
depletion in battery life due to the rated capacity effect, 
as explained earlier. Figure 3 shows the difference in 
current drawn from the battery and the current delivered 
to the sensor node for a Lithium-Ion coin cell battery. 

 

NODE LEVEL ENERGY 
OPTIMIZATION 

Having studied the power dissipation characteristics of 
wireless sensor nodes, we now focus our attention to the 
issue of minimizing the power consumed by these nodes. 
As a first step towards incorporating energy awareness 
into the network, it is necessary to develop 
hardware/software design methodologies and system 
architectures that enable energy-aware design and 
operation of individual sensor nodes in the network. 
 
POWER-AWARE COMPUTING 

Advances in low-power circuit and system design [6] 
have resulted in the development of several ultra low 
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power microprocessors, and microcontrollers. In 
addition to using low-power hardware components 
during sensor node design, operating the various system 
resources in a power-aware manner through the use of 
dynamic power management (DPM) [14] can reduce 
energy consumption further, increasing battery lifetime. 
A commonly used power management scheme is based 
on idle component shutdown, in which the sensor node, 
or parts of it, is shutdown or sent into one of several 
low-power states if no interesting events occur. Such 
event-driven power management is extremely crucial in 
maximizing node lifetime. The core issue in shutdown 
based DPM is deciding the state transition policy [14], 
since different states are characterized by different 
amounts of power consumption, and state transitions 
have a non-negligible power and time overhead. 

While shutdown techniques save energy by turning off 
idle components, additional energy savings are possible 
in active state through the use of dynamic voltage 
scaling (DVS) [15]. Most microprocessor-based systems 
have a time varying computational load, and hence peak 
system performance is not always required. DVS 
exploits this fact by dynamically adapting the processor's 
supply voltage and operating frequency to just meet the 
instantaneous processing requirement, thus trading off 
unutilized performance for energy savings. DVS based 
power management, when applicable, has been shown to 
have significantly higher energy efficiency compared to 
shutdown based power management due to the convex 
nature of the energy- speed curve [15]. Several modern 
processors such as Intel's StrongARM and Transmeta's 
Crusoe support scaling of voltage and frequency, thus 
providing control knobs for energy-performance 
management. 

For example, consider the target-tracking application 
discussed earlier. The duration of node shutdown can be 
used as a control knob to trade off tracking fidelity 
against energy. A low operational duty cycle for a node 
reduces energy consumption at the cost of a few missed 
detections. Further, the target update rate varies, 
depending on the Quality of Service requirements of the 
user. A low update rate implies more available latency to 
process each sensor data sample, which can be exploited 
to reduce energy through the use of DVS. 
 
ENERGY AWARE SOFTWARE 

Despite the higher energy efficiency of application 
specific hardware platforms, the advantage of flexibility 
offered by microprocessor and DSP based systems has 
resulted in the increasing use of programmable solutions 
during system design. Sensor network lifetime can be 
significantly enhanced if the system software, including 
the operating system (OS), application layer, and 
network protocols are all designed to be energy aware. 

The OS is ideally poised to implement shutdown-
based and DVS-based power management policies, since 
it has global knowledge of the performance and fidelity 
requirements of all the applications, and can directly 
control the underlying hardware resources, fine tuning 
the available performance-energy control knobs. At the 
core of the OS is a task scheduler, which is responsible 
for scheduling a given set of tasks to run on the system 
while ensuring that timing constraints are satisfied. 
System lifetime can be increased considerably by 
incorporating energy awareness into the task scheduling 
process [16], [17]. 

The energy aware real-time scheduling algorithm 
proposed in [16] exploits two observations about the 
operating scenario of wireless systems, to provide an 
adaptive power vs. fidelity tradeoff. The first observation 
is that these systems are inherently designed to operate 
resiliently in the presence of varying fidelity in the form 
of data losses, and errors over wireless links. This ability 
to adapt to changing fidelity is used to trade off against 
energy. Second, these systems exhibit significant 
correlated variations in computation and communication 
processing load due to underlying time-varying physical 
phenomena. This observation is exploited to proactively 
manage energy resources by predicting processing 
requirements. The voltage is set according to predicted 
computation requirements of individual task instances, 
and adaptive feedback control is used to keep the system 
fidelity (timing violations) within specifications. 

The energy-fidelity tradeoff can be exploited further 
by designing the application layer to be energy scalable. 
This can be achieved by transforming application 
software such that the most significant computations are 
performed first. Thus, terminating the algorithm 
prematurely due to energy constraints, does not impact 
the result severely. For example, the target tracking 
application described earlier involves the extensive use 
of signal filtering algorithms such as Kalman filtering. 
Transforming the filtering algorithms to be energy 
scalable, trades off computational precision (and hence, 
tracking precision) for energy consumption. Several 
transforms to enhance the energy scalability of DSP 
algorithms are presented in [18]. 
 
POWER MANAGEMENT OF RADIOS 

While power management of embedded processors has 
been studied extensively, incorporating power awareness 
into radio subsystems has remained relatively 
unexplored. Power management of radios is extremely 
important since wireless communication is a major 
power consumer during system operation. One way of 
characterizing the importance of this problem is in terms 
of the ratio of the energy spent in sending one bit to the 
energy spent in executing one instruction. While it is not 
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quite fair to compare this ratio across nodes without 
normalizing for transmission range, bit error probability, 
and the complexity of instruction (8-bit vs. 32-bit), this 
ratio is nevertheless useful. Example values are from 
1500 to 2700 for Rockwell’s WIN nodes, 220 to 2900 
for the MEDUSA II nodes, and is around 1400 for the 
WINS NG 2.0 nodes from the Sensoria Corporation that 
are used by many researchers. 

The power consumed by a radio has two main 
components to it, an RF component that depends on the 
transmission distance and modulation parameters, and an 
electronics component that accounts for the power 
consumed by the circuitry that performs frequency 
synthesis, filtering, up-converting, etc. Radio power 
management is a non-trivial problem, particularly since 
the well-understood techniques of processor power 
management may not be directly applicable. For 
example, techniques such as dynamic voltage and 
frequency scaling reduce processor energy consumption 
at the cost of an increase in the latency of computation. 
However, in the case of radios, the electronics power can 
be comparable to the RF component (which varies with 
the transmission distance). Therefore, slowing down the 
radio may actually lead to an increase in energy 
consumption. Other architecture specific overheads like 
the startup cost of the radio can be quite significant [9], 
making power management of radios a complex 
problem. The various tradeoffs involved in incorporating 
energy awareness into wireless communication will be 
discussed further in the next section. 
 
ENERGY AWARE PACKET FORWARDING 

In addition to sensing and communicating its own data 
to other nodes, a sensor node also acts as a router, 
forwarding packets meant for other nodes. In fact, for 
typical sensor network scenarios, a large portion (around 
65%) of all packets received by a sensor node need to be 
forwarded to other destinations [19]. Typical sensor 
node architectures implement most of the protocol 
processing functionality on the main computing engine. 
Hence, every received packet, irrespective of its final 
destination, travels all the way to the computing 
subsystem and gets processed, resulting in a high energy 
overhead.  The use of intelligent radio hardware, as 
shown in Figure 4, enables packets that need to be 
forwarded to be identified and re-directed from the 
communication subsystem itself, allowing the computing 
subsystem to remain in Sleep mode, saving energy [19]. 

 

ENERGY AWARE WIRELESS 
COMMUNICATION 

While power management of individual sensor nodes 
reduces energy consumption, it is important for the 

communication between nodes to be conducted in an 
energy efficient manner as well. Since the wireless 
transmission of data accounts for a major portion of the 
total energy consumption, power management decisions 
that take into account the effect of inter-node 
communication yield significantly higher energy 
savings. Further, incorporating power management into 
the communication process enables the diffusion of 
energy awareness from an individual sensor node to a 
group of communicating nodes, thereby enhancing the 
lifetime of entire regions of the network. To achieve 
power-aware communication it is necessary to identify 
and exploit the various performance-energy trade-off 
knobs that exist in the communication subsystem. 
 
MODULATION SCHEMES 

Besides the hardware architecture itself, the specific 
radio technology used in the wireless link between 
sensor nodes plays an important role in energy 
considerations. The choice of modulation scheme greatly 
influences the overall energy versus fidelity and latency 
tradeoff that is inherent to a wireless communication 
link. Equation (1) expresses the energy cost for 
transmitting one bit of information, as a function of the 
packet payload size L, the header size H, the fixed 
overhead Estart associated with the radio startup transient, 
and the symbol rate RS for an M-ary modulation scheme 
[9], [20]. Pelec represents the power consumption of the 
electronic circuitry for frequency synthesis, filtering, 
modulating, upconverting, etc. The power delivered by 
the power amplifier, PRF, needs to go up as M increases, 
in order to maintain the same error rate. 
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Figure 5 plots the communication energy per bit as a 

function of the packet size and the modulation level M. 
This curve was obtained using the parameters given in 
Table III, which are representative for sensor networks, 
and choosing Quadrature Amplitude Modulation (QAM) 
[9], [20]. The markers in Figure 5 indicate the optimal 
modulation setting for each packet size, which is 
independent of L. In fact, this optimal modulation level 
is relatively high, close to 16-QAM for the values 
specified in Table III. Higher modulation levels might be 
unrealistic in low-end wireless systems, such as sensor 
nodes. In these scenarios, a practical guideline for saving 
energy is to transmit as fast as possible, at the optimal 
setting [9]. However, if for reasons of peak-throughput, 
higher modulation levels than the optimal one need to be 
provided, adaptively changing the modulation level can 
lower the overall energy consumption. When the 
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instantaneous traffic load is lower than the peak value, 
transmissions can be slowed down, possibly all the way 
to the optimal operating point. This technique of 
dynamically adapting the modulation level to match the 
instantaneous traffic load, as part of the radio power 
management, is called modulation scaling [20]. It is 
worth noting that dynamic modulation scaling is the 
exact counterpart of dynamic voltage scaling, which has 
been shown to be extremely effective for processor 
power management, as described earlier. 

The above conclusions are expected to hold for other 
implementations of sensor network transceivers as well. 
Furthermore, since the startup cost is significant in most 
radio architectures [9], it is beneficial to operate with as 
large a packet size as possible, since it amortizes this 
fixed overhead over more bits. However, aggregating 
more data into a single packet has the downside of 
increasing the overall latency of information exchange. 

The discussion up until now has focused on the links 
between two sensor nodes, which are characterized by 
their short distance. However, when external users 
interact with the network, they often times do so via 
specialized gateway nodes [22], [23]. These gateway 
nodes offer long-haul communication services, and are 
therefore in a different regime where PRF dominates Pelec. 
In this case, the optimal M shifts to the lowest possible 
value, such that it becomes beneficial to transmit as slow 
as possible, subject to the traffic load. In this regime, 
modulation scaling is clearly very effective [20]. 
 
COORDINATED POWER MANAGEMENT TO EXPLOIT 
COMPUTATION COMMUNICATION TRADEOFF 

Sensor networks involve several node-level and 
network-wide computation-communication tradeoffs, 
which can be exploited for energy management. At the 
individual node level, power management techniques 
such as DVS and modulation scaling reduce the energy 
consumption at the cost of increased latency. Since both 
the computation and communication subsystems take 
from the total acceptable latency budget, exploiting the 
inherent synergy between them to perform coordinated 
power management will result in far lower energy 
consumption. For example, the relative split up of the 
available latency for the purposes of dynamic voltage 
scaling and dynamic modulation scaling significantly 
impacts the energy savings obtained. Figure 6 shows a 
system power management module that is integrated into 
the OS, and performs coordinated power management of 
the computing, communication and sensing subsystems. 

The computation-communication tradeoff manifests 
itself in a powerful way due to the distributed nature of 
these sensor networks. The network's inherent capability 
for parallel processing offers further energy optimization 
potential. Distributing an algorithm's computation 

among multiple sensor nodes enables the computation to 
be performed in parallel. The increased allowable 
latency per computation enables the use of voltage 
scaling, or other energy-latency tradeoff techniques. 
Distributed computing algorithms however demand 
more inter-node collaboration, thereby increasing the 
amount of communication that needs to take place. 

These computation-communication tradeoffs extend 
beyond individual nodes to the network level too. As we 
will discuss in the next section, the high redundancy 
present in the data gathering process, enables the use of 
data combining techniques to reduce the amount of data 
to be communicated, at the expense of extra computation 
at individual nodes to perform data aggregation. 
 
LINK LAYER OPTIMIZATIONS 

While exploring energy-performance-quality tradeoffs, 
reliability constraints also have to be considered, which 
are related to the interplay of communication packet 
losses and sensor data compression. Reliability decisions 
are usually taken at the link layer, which is responsible 
for some form of error detection and correction. 
Adaptive error correction schemes were proposed in [24] 
to reduce energy consumption, while maintaining the bit 
error rate (BER) specifications of the user. For a given 
BER requirement, error control schemes reduce the 
transmit power required to send a packet, at the cost of 
additional processing power at the transmitter and 
receiver. This is especially useful for long-distance 
transmissions to gateway nodes, which involve large 
transmit power. Link layer techniques also play an 
indirect role in reducing energy consumption. The use of 
a good error control scheme minimizes the number of 
times a packet retransmissions, thus reducing the power 
consumed at the transmitter as well as the receiver. 
 

NETWORK-WIDE ENERGY 
OPTIMIZATION 

Incorporating energy awareness into individual nodes 
and pairs of communicating nodes alone does not solve 
the energy problem in sensor networks. The network as a 
whole should be energy-aware, for which the network-
level global decisions should be energy-aware.  
 
TRAFFIC DISTRIBUTION 

At the highest level of sensor network, the issue of 
how traffic is forwarded from the data source to the data 
sink arises. Data sinks typically are user nodes or 
specialized gateways that connect the sensor network to 
the outside world. One aspect of traffic forwarding is the 
choice of an energy efficient multi-hop route between 
source and destination. Several approaches have been 
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proposed [3], [23], [25] which aim at selecting a path 
that minimizes the total energy consumption. 

However, such a strategy does not always maximize 
the network lifetime [26]. Consider the target-tracking 
example again. While forwarding the gathered and 
processed data to the gateway, it is desirable to avoid 
routes through regions of the network that are running 
low on energy resources, thus preserving them for 
future, possibly critical detection and communication 
tasks. For the same reason, it is in general, undesirable to 
continuously forward traffic via the same path, even 
though it minimizes the energy, up to the point where 
the nodes on that path are depleted of energy, and the 
network connectivity is compromised. It would, instead, 
be preferable to spread the load more uniformly over the 
network. This general guideline can increase the network 
lifetime in typical scenarios, although this is not always 
the case [26] as the optimal distribution of traffic load is 
possible only when future network activity is known. 
 
TOPOLOGY MANAGEMENT 

The traffic distribution through appropriate routing 
essentially exploits the macro-scale redundancy of 
possible routes between source and destination.  
However, on each route, there is also a micro-scale 
redundancy of nodes that are essentially equivalent for 
the multi-hop path. In typical deployment scenarios, a 
dense network is required to ensure adequate coverage 
of both the sensing and multi-hop routing functionality, 
in addition to improving network fault-tolerance [11], 
[27]. It is immediately apparent that there exist several 
adaptive energy-fidelity tradeoffs here too. For example, 
in target tracking, denser distributions of sensors lead to 
increasingly precise tracking results. However, if 
network lifetime is more critical than tracking precision, 
tracking could be done using data samples from fewer 
nodes. In addition to reducing the computational 
complexity itself, this also reduces the communication 
requirements of the non- participating nodes since they 
no longer have to send in their data to be processed. 

Despite the inherent node redundancy, these high 
densities do not immediately result in an increased 
network lifetime, as the radio energy consumption in 
Idle mode does not differ much from that in Transmit or 
Receive mode. Only by transitioning the radio to the 
Sleep state can temporarily quiescent nodes conserve 
battery energy. However, in this state, nodes cannot be 
communicated with, and have effectively retracted from 
the network, thereby changing the active topology. Thus, 
the crucial issue is to intelligently manage the sleep state 
transitions while providing robust undisturbed operation. 

This reasoning is the foundation for the time slotted 
MAC protocol for sensor networks in [22] where the 
nodes only need to wake up during time slots that they 

are assigned to, although this comes at the cost of 
maintaining time synchronization. An alternative 
approach advocates explicit node wake up via a separate, 
but low-power paging channel. In addition, true 
topology management explicitly leverages the fact that 
in high node density several nodes can be considered 
backups of each other with respect to traffic forwarding. 
The GAF protocol [11] identifies equivalent nodes based 
on their geographic location in a virtual grid such that 
they replace each other directly and transparently in the 
routing topology. In SPAN [27], a limited number of 
coordinator nodes are elected to forward the bulk of the 
traffic as a backbone within the ad-hoc network, while 
other nodes can frequently transition to a sleep state. 
Both GAF and SPAN are distributed protocols that 
provision for periodic rotation of node functionality to 
ensure fair energy consumption distribution. STEM [28] 
goes beyond GAF and SPAN in improving the network 
lifespan by exploiting the fact that most of the time the 
network is only sensing its environment waiting for an 
event to happen. By eliminating GAF and SPAN’s 
restriction of network capacity preservation at all times, 
STEM trades off an increased latency to set up a multi-
hop path to achieve much higher energy savings. 

 
COMPUTATION COMMUNICATION TRADEOFFS  

Intelligent routing protocols and topology management 
ensure that the burden of forwarding traffic is distributed 
between nodes in an energy-efficient, i.e., network 
lifetime improving, fashion. Further enhancements are 
possible by reducing the size of the packets that are 
forwarded. As mentioned earlier, each node already 
processes its sensor data internally to this end. Consider 
the target tracking application. Due to high node 
densities, a target is detected not only by a single node, 
but also by an entire cloud of nearby nodes, leading to a 
high degree of redundancy in the gathered data. 
Combining the information from the nodes in this cloud 
via in-network processing can both improve the 
reliability of the detection event/data, and greatly reduce 
the amount of traffic. One option is to combine the 
sensor readings of different nodes in a coherent fashion 
via beam-forming techniques [22]. Alternatively, non-
coherent combining, also known as data fusion or 
aggregation, can be used, which does not require 
synchronization, but is less powerful. Several 
alternatives have been proposed to select the nodes that 
perform the actual combining, such as winner election 
[22], clustering [23], or traffic-steered [26]. These 
techniques illustrate the effectiveness of exploiting 
network wide computation-communication tradeoffs. 
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OVERHEAD REDUCTION 

The sensor data packet payload can be quite compact 
due to in-network processing, with reported packet 
payloads as low as 8 to 16 bits [22].  Also, attribute 
based naming and routing are being used [3], where the 
more common attributes can be coded in fewer bits.  
Short random identifiers have been proposed to replace 
unique identifiers for end-to-end functions such as 
fragmentation/reassembly. Spatial reuse, combined with 
Huffman-coded representation, can significantly reduce 
the size of MAC addresses compared to traditional 
network-wide unique identifiers [21]. Packet headers 
using attribute-based routing identifiers and encoded 
reusable MAC addresses are very compact, of the order 
of 10 bits. This reduction will become more important as 
radios with smaller startup cost are developed [9]. 
 

CONCLUSIONS 
Sensor networks have emerged as a revolutionary 

technology for querying the physical world and hold 
promise in a wide variety of applications. However, the 
extremely energy constrained nature of these networks 
necessitate that their design and operation be done in an 
energy-aware manner, enabling the system to 
dynamically make tradeoffs between performance, 
fidelity, and energy consumption. We presented several 
energy optimization and management techniques at 
node, link, and network level, leveraging which can lead 
to significant enhancement in sensor network lifetime. 
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Fig. 3. Current drawn from the battery (Chan 1) and current 
supplied to the node (Chan 3) 
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Fig. 5. Radio energy per bit as a function of packet size and 
modulation level 
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TABLE I 
 

POWER ANALYSIS OF ROCKWELL’S  WINS NODES 

MCU  
Mode 

Sensor  
Mode 

Radio  
Mode 

Power  
(mW) 

Tx (Power: 36.3 mW) 1080.5 
Tx (Power: 19.1 mW) 986.0 
Tx (Power: 13.8 mW) 942.6 
Tx (Power: 3.47 mW) 815.5 
Tx (Power: 2.51 mW) 807.5 
Tx (Power: 0.96 mW) 787.5 
Tx (Power: 0.30 mW) 773.9 

 
 
 

Active 

 
 
 

On 

Tx (Power: 0.12 mW) 771.1 
Active On Rx 751.6 
Active On Idle 727.5 
Active On Sleep 416.3 
Active On Removed 383.3 
Sleep On Removed 64.0 
Active Removed Removed 360.0 
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TABLE II 
 

POWER ANALYSIS OF MEDUSA II NODES 

MCU  
Mode 

Sensor  
Mode 

Radio  
Mode 

Mod. 
Scheme 

Data 
Rate 

Power  
(mW) 

Tx (Power: 0.7368 mW) OOK 2.4 kbps 24.58 
Tx (Power: 0.0979 mW) OOK 2.4 kbps 19.24 
Tx (Power: 0.7368 mW) OOK 19.2 kbps 25.37 
Tx (Power: 0.0979 mW) OOK 19.2 kbps 20.05 
Tx (Power: 0.7368 mW) ASK 2.4 kbps 26.55 
Tx (Power: 0.0979 mW) ASK 2.4 kbps 21.26 
Tx (Power: 0.7368 mW) ASK 19.2 kbps 27.46 

 
 
 

Active 

 
 
 

On 

Tx (Power: 0.0979 mW) ASK 19.2 kbps 22.06 
Active On Rx Any Any 22.20 
Active On Idle Any Any 22.06 
Active On Off Any Any 9.72 

Idle On Off Any Any 5.92 
Sleep Off Off Any Any 0.02 
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TABLE III 
 

TYPICAL RADIO PARAMETERS FOR SENSOR NETWORKS 

Estart 1∝J 
Pelec 12mW 
PRF 1mW for 4-QAM 
RS 1 Mbaud 
H 16 bits 
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Abstract—In wireless sensor networks, where energy 
efficiency is the key design challenge, the energy 
consumption is typically dominated by the node’s 
communication subsystem. It can only be reduced 
significantly by transitioning the embedded radio to a sleep 
state, at which point the node essentially retracts from the 
network topology. Existing topology management schemes 
have focused on cleverly selecting which nodes can turn off 
their radio, without sacrificing the capacity of the network. 
We propose a new technique, called Sparse Topology and 
Energy Management (STEM), that dramatically improves 
the network lifetime by exploiting the fact that most of the 
time, the network is only sensing its environment waiting for 
an event to happen. By alleviating the restriction of network 
capacity preservation, we can trade off extensive energy 
savings for an increased latency to set up a multi-hop path. 
We will also show how STEM integrates efficiently with 
existing topology management techniques. 
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 1. INTRODUCTION 

Sensor Networks 

Sensor nodes are autonomous devices equipped with heavily 
integrated sensing, processing, and communication 
capabilities [1][2]. When these nodes are networked 
together in an ad-hoc fashion, they form a sensor network. 
The nodes gather data via their sensors, process it locally or 
coordinate amongst neighbors and forward the information 
to the user or, in general, a data sink. Due to the node’s 
limited transmission range, this forwarding mostly involves 

using multi-hop paths through other nodes [3]. It is 
important to point out that a node in the network has 
essentially two different tasks: (1) sensing its environment 
and processing the information, and (2) forwarding traffic as 
an intermediate relay in the multi-hop path. 
 
Such sensor networks find applicability in wildlife 
observation, smart office buildings, and applications such as 
battlefield or disaster area monitoring. They are also 
considered to establish sensor grids on distant planetary 
bodies, relaying information to the interplanetary Internet. In 
addition, future large-scale networks of resource limited 
satellites are likely to be governed by similar principles and 
can benefit from the design methodologies developed for 
sensor networks. 
 
The major design challenge for this type of networks is to 
increase their operational lifetime as much as possible, 
despite the limited energy supply of each node [1][2][3]. 
Indeed, to provide unobtrusive operation, sensor nodes are 
miniature devices and, as a result, operate on a tiny, non-
replaceable battery. Energy efficiency is therefore the 
critical design constraint.  
 
In terms of energy consumption, the wireless exchange of 
data between nodes strongly dominates other node functions 
such as sensing and processing [1][3][4]. Moreover, the 
radio consumes almost as much energy in receive and idle 
mode as it does in transmit mode [4]. Significant energy 
savings are only obtainable by putting the node in sleep 
mode, essentially disconnecting it from the network and 
changing the topology. This has severe repercussions, as 
sleeping nodes can no longer function as relays in multi-hop 
paths. 
 
Topology Management 

The goal of topology management is to coordinate the sleep 
transitions of all the nodes, while ensuring adequate network 
connectivity, such that data can be forwarded efficiently to 
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the data sink. Existing topology management schemes try to 
do just that: they remove redundancy in the network 
topology while trying to conserve the data communication 
capacity [5][6]. Due to this restriction of sacrificing as little 
of the forwarding capacity as possible, the gains of these 
schemes are relatively modest, even for extremely dense 
networks. The underlying reasoning is that they implicitly 
assume the network has data to forward, which we refer to 
as being in the ‘transfer state’. 
 
However, most of the time, the sensor network is only 
monitoring its environment, waiting for an event to happen. 
For a large subset of sensor net applications, no data needs 
to be forwarded to the data sink in this ‘monitoring state’. 
 
Consider for example a sensor network that is designed to 
detect brush fires. It has to remain operational for months or 
years, while only sensing if a fire has started. Once a fire is 
detected, this information should be forwarded to the user 
quickly. Even when we want to track how the fire spreads, it 
probably suffices for the network to remain up only for an 
additional week or so. It is clear that although the transfer 
state should be energy efficient, it is far more important for 
the monitoring state to be ultra-low power, as the network 
resides in this state most of the time. Similar observations 
hold for applications such as surveillance of battlefields, 
machine failures, room occupancy, or other reactive 
scenarios, where the user needs to be informed once a 
condition is satisfied.  
 
Of course, different parts of the network could be in 
monitoring or transfer state, so, strictly speaking, the ‘state’ 
is more a property of the locality of node, rather than the 
entire network. We also note that the network probably 
needs to transition to the transfer state periodically to 
exchange network management and maintenance messages 
[1]. 
 
Nevertheless, these sensor networks often spend the vast 
majority of time in the monitoring state. It is therefore 
critical to optimize the network’s energy efficiency in this 
state as much as possible, beyond what is accomplished by 
existing topology management techniques.  
 
We acknowledge that sensor networks could also be 
designed to periodically send updates to the data sink, or, in 
general, reside in the monitoring state much less frequent. In 
this case, the technique presented in this paper is expected to 
be much less useful. Yet, we foresee that the majority of 
sensor network applications and scenarios would have 
significant periods without data forwarding activity, and as 
such greatly benefit from the topology management 
technique we will present here. 
 
Our Contributions 

We observe that in the monitoring state, which we expect to 
be predominant, the requirement of capacity preservation is 

no longer pertinent. Instead, nodes only need the ability to 
wake up neighbors to perform coordinated sensing or set up 
a path, with a reasonable latency. As such, the network 
topology can be much sparser, and nodes spend more time 
sleeping. 
 
In principle, the communication capacity could be reduced 
to virtually zero, by turning off the radios of all nodes (i.e., 
putting them in the sleep mode). Note that the sensors and 
processor can be on at that time, since they are much less 
power hungry than the communication subsystem. As soon 
as events are detected, however, nodes need to be woken up 
quickly to set up the multi-hop communication path to the 
data sink. This requires nodes to communicate with each 
other, but this is only possible if they have their radio turned 
on. We obviously have two contradictory requirements here: 
on the one hand, nodes should be in sleep mode as often as 
possible when they are in the monitoring state, yet they 
should receive requests of other nodes to return to the more 
active transfer state. 
 
In this paper, we propose a new topology management 
scheme, called STEM (Sparse Topology and Energy 
Management). It trades off energy consumption in the 
monitoring state, versus latency of switching back to the 
transfer state. The resulting energy savings have a significant 
impact on the network lifetime, which is extended in 
addition to and beyond existing approaches. 
 
Prior Work 

For sensor networks, two alternative routing approaches 
have been considered: flat multi-hop and clustering. 
Although STEM is applicable to both of them, we mainly 
focus on flat multi-hop routing [3][7][8]. For clustered 
approaches [9], which are possibly hierarchical, our scheme 
can be used to reduce the energy of the cluster heads, 
although the gains are expected to be less dramatic here. 
 
Recently, topology management techniques, called SPAN 
[5] and GAF [6], have been proposed for flat multi-hop 
routing. They operate on the assumption that the network 
capacity needs to be preserved. As a result, the energy 
consumption is approximately the same whether the network 
is in the transfer or monitoring state, as no distinction is 
made between them. In contrast, STEM dramatically 
improves the energy efficiency in the monitoring state, far 
beyond what is achieved by SPAN and GAF alone, which 
can still be used in the transfer state. We can thus claim that 
STEM is in a way orthogonal to these existing techniques. 
 
In SPAN [5], a limited set of nodes forms a multi-hop 
forwarding backbone, which tries to preserve the original 
capacity of the underlying ad-hoc network. Other nodes 
transition to sleep states more frequently, as they no longer 
carry the burden of forwarding data of other nodes. To 
balance out energy consumption, the backbone functionality 
is rotated between nodes, and as such there is a strong 
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interaction with the routing layer. Unlike SPAN, STEM 
does not try to conserve capacity, resulting in greater energy 
savings, and also does not impact routing. 
 
Geographic Adaptive Fidelity (GAF) [6] exploits the fact 
that nearby nodes can perfectly and transparently replace 
each other in the routing topology. The sensor network is 
subdivided into small grids, such that nodes in the same grid 
are equivalent from a routing perspective. At each point in 
time, only one node in each grid is active, while the others 
are in the energy-saving sleep mode. Substantial energy 
gains are, however, only achieved in very dense networks. 
We will discuss this issue further on in this paper, when we 
integrate STEM with GAF. 
 
An approach that is closely related to STEM is the use of a 
separate paging channel to wake up nodes that have turned 
of their main radio [10]. However, the paging channel radio 
cannot be put in the sleep mode for obvious reasons. This 
approach thus critically assumes that the paging radio is 
much lower power than the one used for regular data 
communications. It is yet unclear if such radio can be 
designed. STEM basically emulates the behavior of a paging 
channel, by having a radio with a low duty cycle radio, 
instead of a radio with low power consumption. 
 
 
 2. SPARSE TOPOLOGY MANAGEMENT 

Basic Concept 

In the application scenarios we consider in this paper, the 
sensor network is in the monitoring state the vast majority of 
its lifetime. Ideally, we would like to only turn on the 
sensors and some preprocessing circuitry. When a possible 
event is detected, the main processor is woken up to analyze 
the data in more detail. The radio, which is normally turned 
off, is only woken up if the processor decides that the 
information needs to be forwarded to the data sink. 
 
Now, the problem is that the radio of the next hop in the 
path to the data sink is still turned off, if it did not detect that 

same event. As a solution, each node periodically turns on 
its radio for a short time to listen if someone wants to 
communicate with it. The node that wants to communicate, 
the ‘initiator node’, sends out a beacon with the ID of the 
node it is trying to wake up, called the ‘target node’. In fact, 
this can be viewed as the initiator node attempting to 
activate the link between itself and the target node. As soon 
as the target node receives this beacon, it responds to the 
initiator node and both keep their radio on at this point. If 
the packet needs to be relayed further, the target node will 
become the initiator node for the next hop and the process is 
repeated.  
 
Dual Frequency Setup 

Once both nodes that make up a link have their radio on, the 
link is active, and can be used for subsequent packets. In 
order for actual data transmissions not to interfere with the 
wakeup protocol, we propose to send them in different 
frequency bands using a separate radio in each band. Sensor 
nodes developed by Sensoria Corporation [11], for example, 
are already equipped with a dual radio. 
 
Figure 1 shows the proposed radio setup. The wakeup 
messages, which were discussed in the subsection above, are 
transmitted by the radio operating in frequency band f1. We 
refer to these communications as occurring in the ‘wakeup 
plane’. Once the initiator node has successfully notified the 
target node, both nodes turn on their radio that operates in 
frequency band f2. The actual data packets are transmitted in 
this band, or what we call the ‘data plane’. 
 
 
 
 
 
 
 

Figure 1 – Radio setup of a sensor node 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 – State transitions of STEM for a particular node 

Wakeup plane:  f1 

 
Data plane:  f2 

t1 t2 

t3 

t4 

t5 

T TRx 

Sleep 

Rx 
Tx Power 

Power 
Time 

Time 

f1 

f2 

Tx /Rx Tx /Rx 

Sleep 

147



STEM Operation 

Figure 2 presents an example of typical radio mode 
transitions for one particular node in the network. Some 
representative power numbers for the different modes are 
summarized in Table 1. These numbers correspond to a 2.4 
Kbps low-power RFM radio using OOK modulation, with 
an approximate transmit range of 20 meters [4].  
 

 
Table 1. Radio power characterization 

Radio mode Power consumption (mW) 

Transmit (Tx) 14.88 

Receive (Rx) 12.50 

Idle 12.36 

Sleep 0.016 

 
 
At time t1, the node wants to wake up one of its neighbors 
and thus becomes an initiator. It starts sending beacon 
packets on frequency f1, until it receives a response from the 
target node, which happens at time t2. At this moment, the 
radio in frequency band f2 is turned on for regular data 
transmissions. Note that at the same time, the radio in band 
f1 still wakes up periodically from its sleep state to listen if 
any nodes want to contact it.  After the data transmissions 
have ended (e.g. at the end of a predetermined stream of 
packets, after a timeout, etc.), the node turns its radio in 
band f2 off again. At time t4, it receives a beacon from 
another initiator node while listing in the f1 band. The node 
responds to the initiator and turns its radio on again in band 
f2. 
 

 
 
 
 
 
 
 

Figure 3 – Radio on-time in the wakeup plane 

In order for the target node to receive at least one beacon, it 
needs to turn on its radio for a sufficiently long time, 
denoted as TRx. Figure 3 illustrates the worst-case situation 
where the radio is turned on just too late to receive the first 
beacon. In order to receive the second beacon, TRx should be 
at least as long as twice the transmit time B1 of a beacon 
packet, plus the inter-beacon spacing B2 that is required to 
allow the target node to respond. 
 
 

 3. THEORETICAL ANALYSIS 

Setup Latency 

Before simulating our protocol, we first develop a 
theoretical model of the system performance. We define the 
setup latency TS of a link as the interval from the time the 
initiator starts sending out beacons, to the time the target 
node has responded to the beacon. Typically the target and 
originator node are not synchronized, which means that the 
beacon sending process starts at a random point in the cycle 
of the target node. As a result, the start of the first beacon is 
distributed uniformly random in interval T. Figure 4 shows 
the values of TS, normalized versus B1+2 = B1 + B2, for 
different start times of the beacon sending process. 
 
It is clear that TS only takes on integer multiples of B1+2, as 
this is the time it takes to send a beacon and receive the 
response to it. For the region that is labeled i in Figure 4, the 
setup latency is equal to i·B1+2, since beacon i is the first one 
to fall entirely within the interval of length TRx when the 
target node’s radio is on.  The probability of being in region 
i is equal to the length of that region divided by T. As a 
result, for T > TRx, the statistics of TS can be derived from 
Figure 4 as: 
 
 
 
 (1) 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Analysis of the setup latency 
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 (2)  
 
 
Based on these equations, we calculate the average setup 
latency

ST  for a link. To simplify the expressions, we select 

TRx equal to its minimum value (see Figure 3): 
 (3) 
 
 
In this case, (1)-(2) reduce to:  
 
  
 (4) 
 
 
 
 
 (5) 
 
 
The average setup latency per hop can be derived from (4) 
as being equal to (6), where δ is defined in (5). 
 
 (6) 
 
If T is an integer multiple of B1+2, this expression simplifies 
to: 
 
 (7) 
 
Equations (6) and (7) are valid on condition that T > TRx. For 
the special case when there is no sleep period, T = TRx and 
the average setup delay is equal to: 
 (8) 
 
 
Energy Savings 

The total energy consumed by a node during a time interval t 
can be broken up into two components, one for each 
frequency band.  
 
 (9) 
 
Equation (10) details the energy consumption in the wakeup 
plane. The first term accounts for the listening cycle, where 
Pnode is given by (11). In this equation P0

node is a 
combination of idle and receive power. Since both are very 
similar, see Table 1, we can approximate P0

node by Pidle. The 
second term in (10) represents the energy consumption of 
transmitting beacon and response packets (Psetup is thus a 
combination of transmit, receive and idle power). 
 
 (10) 
 
 
 

 
 (11) 
 
 
The energy consumption in the transfer plane is given by 
(12). In this equation, tdata is the total time the radio is turned 
on in the transfer plane for communicating data. As a result, 
Pdata contains contributions of packet transmission, packet 
reception and idle power. 
 
 (12) 
 
 
Without topology management, the total energy would be 
equal to (13). Although Pdata also contains contributions of 
Pidle, we have chosen to split up the energy consumption in 
analogy with (12) for ease of comparison. The main 
difference is that the radio is never in the energy-efficient 
sleep state here. 
 
 (13) 
 
The gain in terms of energy obtained by using STEM is the 
difference between (13) and (9): 
 
 
 (14) 
 
 
 
Since we consider scenarios where the node is in the 
monitoring state most of the time, we can roughly disregard 
tdata and tsetup. By ignoring the minute power of the sleep 
state and substituting P0

node in (11) by Pidle, we approximate 
(14) as: 
 (15) 
 
 
Furthermore, by also ignoring tdata in (13), we can 
reasonably approximate the relative gain in terms of energy 
as: 
 
 (16) 
 
 
From (6) and (16), we can derive the general relationship 
between the setup latency and the relative energy gain for a 
node. For the special case where T is an integer multiple of 
B1+2, as in (7), this relationship is given by:   
 
 (17) 
 
 
Since the node has a finite battery capacity, these energy 
savings directly correspond to the same relative increase in 
the lifetime of a node, which ultimately results in a 
prolonged lifetime of the sensor network. 
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 4. PERFORMANCE EVALUATION 

Simulation Setup 

In this section, we verify our algorithm through simulations, 
which were written on the Parsec platform, an event-driven 
parallel simulation language [12].  We distribute N nodes 
randomly over a square field of size L x L and each of them 
has a transmission range R.  
 
For a uniform network density, the probability Q(n) for a 
node to have n neighbors in a network of N nodes is given 
by the binomial distribution of (18), when edge effects are 
ignored. In this equation, QR is the probability of a node 
being in the transmission range of a particular node, given 
by (19). We use the symbol Q in this paper for probabilities, 
to avoid confusion with power (denoted by P). 
 
 (18) 
 
 
 (19) 
 
 
For large values of N, tending to infinity, this binomial 
distribution converges towards the Poisson distribution (20) 
[13]. The network connectivity is thus only a function of the 
average number of neighbors of a node, denoted by 
parameter . . 
 
 (20) 
 
 
 (21) 
 
 
Since the traffic communication patterns depend solely on 
the network connectivity, we only have to consider .  and 
not N, R and L separately. We have verified this statement 
through simulations, and therefore can characterize a 
uniform network density by the single parameter . .  
 
In our simulations, we have chosen R = 20 m, which 
corresponds to the numbers in Table 1. The area of the 
sensor network is such that for N = 100, we have .  = 20. 
Furthermore, our setup includes a CSMA-type MAC, similar 
to the DCF of 802.11. Table 2 lists the other simulation 
settings, where Lbeacon and Lresponse are the sizes (including 
MAC and PHY header) of the beacon and the response 
packets respectively. 
 
 

Table 2. Simulation settings 
R 20 m  Rb 2.4 Kbps 
L 79.27 m  B1+2 150 ms 

Lbeacon 144 bits  TRx 225 ms 
Lresponse 144 bits    

 

The node closest to the top left corner detects an event and 
sends 20 information packets of 1040 bits to the data sink 
with an inter-packet spacing of 16 seconds. This process will 
therefore take about t* = 320 seconds. The data sink is the 
sensor node located closest to the bottom right corner of the 
field. We have observed that the average path length is 
between 6 and 7 hops.  All reported results are averaged 
over 100 simulation runs. 
 
Simulation Results 

Figure 5 shows the average setup latency per hop as a 
function of the wakeup period T. The dashed curve with the 
markers is obtained via simulations, while the top solid 
curve corresponds to (6). There is a constant offset, which is 
due to the fact that the transmission time of a beacon and 
response packet is actually 120 ms, while the beacon period 
B1+2 was chosen conservatively to be 150 ms. The actual 
setup latency is thus comprised of a number of B1+2 periods, 
plus the time to transmit a beacon and receive the response, 
which is about 30 ms less than what is calculated 
theoretically in (6). From Figure 5, we observe that if we 
correct (6) by subtracting 30 ms, the correspondence to 
simulations is indeed very close. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Average setup latency 
 
 
In Figure 6, the total energy is plotted versus the normalized 
observation interval t/t*. As a basis for comparison, we 
included the curve for a scheme without topology 
management, which corresponds to (13). In this case, there 
is only one radio, which can never be turned off. The other 
dashed curves represent the performance for STEM with 
different values of T. The theoretical results, plotted using 
solid lines, are obtained by multiplying the curve without 
topology management by (1-. E), see (16). 
 
For all values of t, the same number of packets is sent, 
meaning that the duration of the transfer state is kept 
constant, and is approximately equal to t*. When t increases, 
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the monitoring state becomes more predominant. As a result, 
tdata and tsetup in (10), (12), (14) are negligible for large t, 
such that the simulated values start approaching the 
theoretical ones. We observe that STEM results in energy 
savings when t > 2·t*, which means that the network should 
reside in the monitoring state 50% or more of the time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6 – Relative energy savings versus the total 

observation interval t 
 
 
Figure 7 explicitly shows the tradeoff between energy 
savings and setup latency. The solid theoretical curves are 
obtained from (16) and (6), with and without the correction 
that was introduced in Figure 5. We have plotted the 
simulated results for values of the different observation 
period t.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – Simulated energy – setup latency tradeoff 
 
 
For large t, the simulated performance converges to the 
theoretical one. This corresponds to a regime where the 

monitoring state heavily dominates the transfer state, which 
is the focus of this work. We note, however, that STEM can 
also be valuable if outside this regime (i.e., for smaller 
values of t), although the gains are much less pronounced in 
this case. 
 
 
 5. COMBINING STEM AND GAF 

As mentioned in the introduction, existing topology 
management schemes, such as GAF and SPAN, coordinate 
the radio sleep and wakeup cycles while ensuring adequate 
communication capacity. STEM can be viewed as being 
orthogonal to these schemes, and additional gain is achieved 
by considering combinations STEM-GAF or STEM-SPAN. 
In this work, we specifically focus on the interaction 
between STEM and GAF. 
 
GAF Behavior 

In this subsection, we discuss plain GAF, i.e., without 
STEM. The GAF algorithm is based on a division of the 
sensor network in a number of virtual grids of size r by r, 
see Figure 8. The value of r is chosen such that all nodes in 
a grid are equivalent from a routing perspective [6]. This 
means that any two nodes in adjacent grids should be able to 
communicate with each other. By investigating the worst-
case node locations depicted in Figure 8, we can calculate 
that r should satisfy (22) [6]. 
 
 (22) 
 
 
 
 
 
 
 
 

Figure 8 – GAF grid structure 
 
 
The average number of nodes in a grid, M, is given by (23). 
By combining this with (22), we can see that M should 
satisfy (24). The average number of nodes in a grid is thus 
fairly low. Even if r satisfies (22) with equality, which we 
assume to hold for the remainder of this paper, M is smaller 
than 2 for densities of .  = 31. To put this into perspective, .  
= 31 corresponds to a topology where each node has 31 
neighbors on average. 
 
 (23) 
 
 
 (24) 
 
Since all nodes in a grid are equivalent from a routing 
perspective, we can use this redundancy to increase the 
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network lifetime. GAF only keeps one node awake in each 
grid, while the other nodes put their radio in the sleep mode. 
To balance out the energy consumption, the burden of traffic 
forwarding is rotated between nodes. For simplicity, we 
ignore the unavoidable time overlap of this process 
associated with handoff. If there are m nodes in a grid, the 
node will (ideally) only turn its radio on 1/mth of the time 
and therefore will last m times longer. However, equation 
(24) shows that the redundancy is rather low on average, 
even for fairly dense networks. 
 
When distributing nodes over the sensor field, some grids 
will not contain any nodes at all. We use .  to denote the 
fraction of used grids, i.e., which have at least one node. As 
a result, the average number of nodes in the used grids is 
equal to M’, given by:  
 
 (25) 
 
The average power consumption of a node using GAF, 

GAF
nodeP , is equal to (26). In this equation, Pon is the power 

consumption of a node if GAF would not be used. It thus 
contains contributions of receive, idle and transmit mode, as 
the node would never turn its radio off. With GAF, in each 
grid only one node at a time has its radio turned on, so the 
total power consumption of a grid, Pgrid, is virtually equal to 
Pon (neglecting the sleep power of the nodes that have their 
radio turned off). Since M’ nodes share the duties in a grid 
equally, the power consumption of a node is 1/M’ that of the 
grid, as in (26). 
 
 (26) 
 
 
 
The average relative gain in energy for a node is thus given 
by: 
 
 (27) 
 
 
Alternatively, we see that the lifetime of each node in the 
grid is increased with the same factor M’. As a result, the 
average lifetime of a grid, 

gridt , i.e., the time that at least one 

node in the grid is still alive, is given by (28), where tnode is 
the lifetime of a node without GAF. We can essentially view 
a grid as being a ‘virtual node’, composed of M’ actual 
nodes. 
 
 (28) 
 
Note that GAF

nodeP  and 
gridt , which are averages over all grids, 

only depend on M’ and not on the exact distribution of 
nodes in the used grids! Of course, the variance of both the 
node power and the grid lifetime depends on the 
distribution.  If we would have full control over the network 

deployment, we could make sure that every used grid has 
exactly M’ nodes, which minimizes the power and lifetime 
variance. 
 
For the special case of a random node distribution, we now 
calculate the statistics exactly. The probability Q(m) of 
having a grid with m nodes is given by (29). The derivation 
is analogous that the one leading to (20).   
 
 (29) 
 
 
In this case, the fraction .  of used grids is equal to: 
 
 (30) 
 
The probability of having m nodes in a used grid is given by: 
 
 (31) 
 
 
We also know that the probability that power of a node is 
equal to 1/mth of that in a grid, is the same as the probability 
of a node being in a grid with m nodes: 
 
 (32) 
 
 
Alternatively, equation (33) gives the probability that the 
lifetime of a grid is m times that of an individual node.   
 
 (33) 
 
 
We can verify from (32) and (33) that the average values of 

GAF
nodeP  and tgrid are indeed equal to (26) and (27) respectively. 

 
Interaction of STEM and GAF 

As mentioned before, GAF essentially places one virtual 
node in each grid, and the physical nodes alternatively 
perform the functionalities of that virtual node. From this 
perspective, combining GAF with STEM is straightforward 
by envisioning the virtual node as running STEM. In real 
life, nodes alternate between sleep and active states, as 
governed by GAF. The one active node in the grid, runs 
STEM in the same way as described in section 2. The only 
difference is that now the routing protocol needs to address 
virtual nodes (or grids) instead of real nodes.  
 
This insight allows us to directly modify the expressions of 
section 3 to similar ones for the combination of STEM-
GAF. In particular, (16) becomes (34), where the statistics 
of m are given by (32).  
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When considering the average behavior over all grids, we 
get: 
 (35) 
 
If T is an integer multiple of B1+2, we can combine (35) with 
(7) to obtain the following tradeoff between energy savings 
and setup latency:  
 
 (36) 
 
 
Figure 9 plots this tradeoff for different values of M’. As 
argued before, these curves are independent of the exact 
node distribution, but only depend on M’.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 – Theoretical energy – setup delay tradeoff 
 
 
 
The solid curves are based on (6) and  (35). They therefore 
represent the behavior as averaged over the different grids, 
for any T > TRx. On these curves, the ‘+’ markers are points 
obtained from (36), where T is an integer multiple of B1+2.  
 
The circles mark the limiting case where the wakeup-plane 
radio is always on (T = TRx). This case corresponds to a 
traditional paging channel setup, where a separate paging 
radio is used to wake up the main data radio [10]. Of course, 
this only makes sense if the paging radio is substantially 
more energy efficient than the main one. By looking at (27) 
and (35), we notice that in this case the energy savings are 
also the same as those of pure GAF, without STEM, which 
corresponds to intuition. The circles can therefore be viewed 
as the (energy) behavior of GAF as well, although, strictly 
speaking, the setup latency does not have any true meaning 
here. 
By comparing (16) and (35), we note that the curve with M’ 
= 1 can also be viewed as representing the case of STEM 
without GAF, where essentially no node redundancy is 

exploited. So, besides the combination of STEM-GAF, 
figure 9 also shows the behavior of GAF without STEM 
(circles) and of STEM without GAF (curve with M’ = 1). 
 
We notice that by allowing more setup latency, the energy 
savings can be increased considerably beyond what is 
achievable by GAF alone. For a uniform node deployment, 
the values of M’ in Figure 9 translate to M and .  as given by 
(21), (23) and (25). Table 3 lists the values of these 
parameters for the curves of Figure 9.  
 
 

Table 3. Density mapping for  
a uniform node distribution 

M’ M .  

1.0 0 0 

1.5 0.87 13.7 

2.0 1.59 25.0 

2.5 2.22 35.0 

3.0 2.82 44.3 

 
 

Note that for moderate node densities (.  < 25), the average 
redundancy in a used grid is fairly low. As a result, GAF 
alone only results in moderate energy saving, below 34%. 
On the other hand, by incorporating STEM, we can achieve 
savings of more than 93%! In other words, the energy is 
reduced to 66% of the original value by GAF and to a mere 
7% by also using STEM. The penalty is of course an 
increased setup delay.  
 
 
 6. CONCLUSIONS 

In this paper, we have introduced STEM, a topology 
management technique that trades off power savings versus 
path setup latency in sensor networks. It emulates a paging 
channel by having a separate radio operating at a lower duty 
cycle. Upon receiving a wakeup message, it turns on the 
primary radio, which takes care of the regular data 
transmissions. 
 
Our topology management is specifically geared towards 
those scenarios where the network spends most of its time 
waiting for events to happen, without forwarding traffic. 
STEM leverages the fact that, while awaiting events, the 
network capacity can be heavily reduced, resulting in energy 
savings. 
 
We have shown that STEM integrates directly with other 
topology management schemes such as GAF, and results in 
energy savings above and beyond these existing techniques. 
Compared to a network without topology management, a 
combination of GAF and STEM can reduce the energy 
consumption to a mere 7%. Alternatively, this results in a 
node lifetime increase of a factor 14! However, these 
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benefits come at the cost of increased setup latency, which is 
linearly proportional to the number of hops in the multi-hop 
path. It will depend on the specific applications, how much 
latency is allowed, and therefore how far the energy 
consumption can be scaled down. 
 
Analyzing the interaction of STEM and SPAN is a topic of 
future research. Another issue worth investigating is how 
power control strategies can be incorporated into topology 
management. 
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�
�
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	��
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 �%�.� �� � �������� �	 �����
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3
�
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	�������4 �	 ��� �
	��
��	� ������
� �
	���� �� ������ �	���� �� �
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	 �� �
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�������� ��� ����
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� ���	 � �
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���	�� 
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 �	 ������ ����$ �� �� �
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��� ���� ��� 	
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��� �� ��� �
 ����
	 �
�����
	�$ �� ���� �
 	
� ������� �	�

������� �	 ��	� �� ����� �
�� ����� ���� ���� 
�� �	� �����	

�
 ��� �
	��
��	� �����$ ���	������� 
	�� ��� ������� ������

	
��� ���� ����� ���� ����
 
	 �
� ��� ������
	 
� ��� ����

���	����$ %�� ������� .2+ ����� ��	���� �
�����
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	 ���

���� ���	�$
2� �	 �����	����� �
 ��� ����
	3����� ����
��� ��3

������� ��
��� ��� �	�����
� 	
�� �
��� ������ ��	� �

����� �
	�$ �	 ���� ����� 	
��� ��� �� ��	 ���� ������

��� �����	�� 
� ���	�� �	���� �	 ����� �����	 �	������$ %��� ��

�,����� ��� ���� �������
	 �� ��	 ����
	� �
�����$

*
����� ��� ��� �
	�3����� ����
���� � ������ 	
��

	���� ��	�� ���� �	 ���	
������	�$ 2� ���
��� ���

�	�����
� ��� �
 ��	� ��� �
	� �
� � ��������	��� �
	� ����

���� ���� ��� ������ ������ ��� �
��	 
	��$ 8
�� ���� ���

	
��� �	 ��� 	�����
��

� 
� ��� �	�����
� ����� ��� ��

�	 ���� ����$ �	 ���� ������ � �	���(� �
�� ��� ����
	3�����

�	� ��� �
	�3����� ������$ �� ����� �
 ���� �� ������

/����
	0 �	� ������ /�
	�0� ������������$

	�62. �.	 �� /�'? �1�%"%@%� 	��	�. ���)�.A	 %� �6� ���. 5��/����5����	%�5 ��	% � 	1/�� :

-��' :' 	
����
 !��� ��! ���
�� ����� ��� �!���'

-��' B' 	
����
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'
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+ ,�������� �������� �- �� 

+!� ���(% ����	�.

<��
�� ��������	� 
�� ��
�
�
�� � ����� �����
� � ���
��3
����� �
��� 
� ��� ������ ����
���	��$ �� ����	� ��� �
���
�	�
��� �� �� 	 ���� �� ��� �	������ ��
� ��� ���� ��� �	�����
�
������ �
	�����	� ��� ������ �
 ��� ���� �
�� 	
��� ����
���	�� 
	 ����� ���� ����
$

�	 �%�.3<� ��� ������� ����� ����	�� �� ����
,�������
����	 �� / 0 �
� ��� ���� ���� ����� �� 	
 ����
	 �
�����
	$
�	 ���� ������
	� �� �	� �� ��� ��� ���	���� ������
	 
� ���
����
	 �	� ���	
������	� ������� ������������$ %

�
	����� ��� ��
 
� ���� ������ � ���� �
��� ���
��������
	 
� / 0 �
 2���	��, 2$

��� � � � ��

�
� � � �� ��� � ���� ���

�	 2���	��, 2� � ���
 ��
 ���� ��� ����� ����	�� �	
���� 
� � ����
	 �
�����
	 �� ����	 �� /"0$ %��� �,������
	� ��
��� ���� ����� ��������� ��� ��,���� ���� ����	� ����
��� �	�����
� 	���� �
 ��	� ����
	� �	� ��� �	 ����	��� ���

���3���� ����	�� 
� �%�.3<$

�� � � � �� � � � �� ��� � ���� ���
%�� ����� ����	�� 
� ��� �
	�3����� �����	�� �%�.3%� ��

�
	���	� �	� ����	 �� /#0� �� � ������ �	 2���	��, 2$ �	
���� ������
	� �� �� ��� ���� �	������ 
��� ���� ���		��
��	��	� 	���� �
 �� ����
���� �
 ������� � ���������
�� �

����� ����� ��
��������$

�� � � � ��� � � � ��� ���
+!� �	��/. ��'#	/�

1
� ������� ��
��3��	�� ����
� ���� �	 ��	�
� 	��
���� ���
���	����� �������� �	� ���� �
�� ��� ���
�� ���	����� /���
���
 %����  0$ 1
� ��� ���� ����
� � ����
,����� ��� 
� ����
�� -��� 
	� �����4 	�$ 1
� ��� ����� ����
� ���� �� 	
�
	���������� 
� ��� ���� ���� �� ��� ���� ����
� ���� ����� ��
	�$ �	 
�� �	������� 	� �	� 	� ��� ��
��	 ����� �
 ��� ����
�
��$ %�� ����� �
�� �
� ��� ���� �	� ����� ����
 ���
��	
��� �� 	
����� �	� 	
������ ������������$ %
 �������� 
��
��������	� �,������
	�� � ����	� �
 	� ����������4

� � 	�

	�
� ���

� � 	
����� � 	
�����

	�
� ���

7�������� � �������	�� ��� �������� �
�� 
� ��� ���� �	�
����� ����
$ �� ���� �	��
����� ��������� � �
� ����3
������� ����
	�� ��� �� ���
 �
�����
	�� �
 ��� �
�� �
�	�

	 ��� �
�� ����	��� �� � ��� �,����	 �	 �����
	 ;$#$

2���� ���	� ����	�� ���	� �%�.� � 	
�� ���	� 
	 ���
���� ����
 �	 ��	� ��$ ���	 ��� ���� �
���	�����
	 �����
�� 
���� ��� 	
�� �����	� �
 ��� �
3�
�� ����� �����$ %��
������� ���� ��� ����
 �� 
	 ����	� 
	� ���� ����
�
���	�����
	 ����� �� ��	
��� �� ����
�$ �� ��� .2+
��
�
�
� �� ���� ���� ��� 	
�� ���	� 
�� ��� ����
 �
� �
��
����� ���� ����� ���� �� 	
� �	������ �	 ����
�$ ����
�
���	�����
	 ����� �������� 
	� ���	����
	 ��
� ���
�
	��
��	� �
 ��� ���	���� �����$ %�� 	����� 
� ����

���	����
	� ��� ���
	� �� ������ ��� ����� ������	��� �� $
%�� ������
	 
� ���� ��� ���� ����
 �� ���	�� 
	 �� ���� ����	
�� �� ����	�� �� /;0$ %��� ���
 �
�����
	�� �
 ��� ��������
���
���	�� 
� ��� ���	���� �����$ %�� �	����� 
� ��� ����
����� 
� ��� ����� ����
 �� ������ �$

� � �� � ����
�� ���

� � �

���
� ���

�� �������� ��� �	���� ����	�� 
� ��		�	� �%�.
�������� �
 ��� �������
	 ���� ����� �� 	
 ����� ����

�	� ��� ���� ����
 �� 	���� ���	�� 
��$ %�� �������� �	����
�
� �
�� �%�.3< �	� �%�.3% �� ����
,������� ����	 ��
/60$ �	 ���� ������
	� �� �� ��� ������� 	����� 
� ����� ���
���
	� ��� 	
�� ���� �� � ��	� �� ��� �	�����
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��
��������	���� ��� ����� ������	��$ %�� ��������
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�,������
	 �� �	������ �	 2���	��, <$

�
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� �

�
� �� �� � �� � �� �� �
�

2���
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� �
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	�� � �� ������ �
 ��
������ �	 �%�.3% ���	 �%�.3< ��	�� �
�� 	
��� ���
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����� ��� ����� �
 ����� ��� ��������� �
��	�	�$ %�� �	����
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��� �
	��
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��� �
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��	�	� �	� ��	
���� ������ ��� 	�����$ �� ��� ����� ����
 ��	 ��
�����	�� �
 �� �
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 /� C  0� ���
����	�� ���
 �	������$ %�� ���� ���� �	 /60 �����	�� � ��

� �
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 �� �
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 ����
�
������	� ��� ��� ����$ ��	�� ��� 	
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�����
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 ��� ����
�������� �	������ �	 ��� 	
��>� ��������� ���� ����������
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�
	��� �������� 
� ��� ��	�
� 	��
��$

0 �� ���-�� ���� �1�������

0!� �#�(&��#$	 ���(%
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	� � ������ 
�� ���
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�������
�	������ ���
��� ��������
	� ���� ��� �����	 
	 ���
7����� �����
��� �	 ���	�3�����	 �������� ��������
	 ��	3
����� � "!$ �� ���������� � 	
��� �	 � �	��
���� ��	�
�
�����
	 
��� � ����� 
� ��(� � , �$ ���� 	
�� ��� �
���	������
	 ��	�� 7$ 1
� � �	��
���� ��	�
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���	��
��� 	��
�� �
		�������� �� 
	�� � ��	���
	 
� ��� �������
	����� 
� 	�����
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� � 	
��� ��	
��� �� ��������� �4

� � �

��
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��	�� ������� �
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	 ������	� ����	� �
���� 
	
��� 	��
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		��������� � 
	�� ���� �
 �
	����� � �	�
	
� �� 7� �	� � ����������$ %��� �������	� �� ��������
���
��� ��������
	� �	� � ������
�� ��	 ����������(� �
�	��
�� 	��
�� ��	���� �� ��� ��	��� ��������� �$

�	 ���	������ ���� �	� ����� ����
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%��� �� ���������� ���� �
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	�� 	���� �
 �� ���� �
 ��	� 
�� � �
	� �	� ������ ���

B %��� �./�	/��%��	 �� "�0%�� ��"12�%� � ���' 3� ��' 3� 4/�2/.5�"/.�6 7887

158

goodelle
Oval



�
������ �������	� �	 � ���������� �������	����
	$ �	 
��
��������
	�� � ���� ��
��	 ��� ���� %� === ����
 
�
%����  �
� �
�� ���� �	� ����� ���� ���� � D  $ %���� "
����� ��� 
���� ��������
	 �����	��$ %�� ���� 
� ��� ��	�
�
	��
�� �� ���� ����� �
� � D  ==� � ���� � D "=$
1�������
��� 
�� ����� �	������ � +�.23���� .2+�
������� �
 ��� @+1 /����������� �

���	���
	 ��	���
	0 
�
6="$  $ %�� 	
�� ��
���� �
 ��� �
� ���� �
�	�� ������� �	
���	� �	� ��	�� "= �	�
�����
	 ������� 
�  �=)= ����
/�	�����	� ��� �������0 �
 ��� ���� ��	� ��� �	 �	���������
�����	� 
�  ; ���
	��$ %�� 	
�� ���	� ��� ���� ����
 ���� 
��
�� �� ��� 	
� �������� �	� ������� �
� "= ���
	��$ %�� ���� �
�
��� ���� ���	����� ����
�� �� ���� ��
�� #)= ���
	��$ %�� ����
��	� �� ��� ��	�
� 	
�� �
����� ��
���� �
 ��� �
��
� �����
�
�	�� 
� ��� �����$ �� ���� 
������� ���� ��� ������� ����
��	��� �� �����	 ��, �	� ����	 �
��$ 2�� ���
���� �������
��� �������� 
���  == ��������
	 ��	�$

+������� ��� 	
��� ���� ��� 
	 ��� ���� �
	���� �
��
�	���� ���	 ��� 
	�� ���� ��� 	
�$ 1
� ��
�� 
	 ��� ����� ��
�� ����� �
 ��� �	����� 
� ��� �
��� ��������
	 ���� ��	��
����� �� 
	�� 
	� �
���	�����
	 �����$ %�� ����� 
� � ��
���� ��� ���� �
� �%�.3< �	� �%�.3%$ �	 ������
	� �� ��
����� �
 �� � �,���� �
� ��� ��	�� �����	���
	� ���� �� �� (��
$
<������ ��� 	
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	 ��� ����� ����� ��� ��
�� ���� ���
����	�� ������	����� �	 �%�.3% 
� ��� �
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�����
	� �	
�%�.3<$ %��� ���� ��� ���� ����� 
� �� �� ��
��� ��� �� ��
����� �
 (��
$ %�����
��� ���� �
	���� ���� �	����$ 1�	�����
��� 
���� 	
��� ����� �����	 �	 ��� �
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�� �����	 �����
�	� ���� �
�� �� �	� �� ����� �
 (��
$ �	 
�� ��������	�
��������
	�� � 
	�� ���
�� ��� ������� �	���� �
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��� ���� ��� 
	 ��� ����$ %��� �� ����	������ ��� 
��� ����
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��� ��� �
	���� ���� �	���� �	� ���
������
�� ���� �������� �	 ��� �
	������� ���	���
$ �� � ���
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��� ��� 	
���� ��� �	���� ����	�� 
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� �	 ��� ���� �� ��������� �	 �����
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1��$ 9 ��
� ��� ������� ����� ����	�� ��� �
� �� � ��	���
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	 ������� 
� �%�.3<
���
�� �
�����
	� ����� ��� ��� ��� ���
������� �	������ 
�
/ 0$ �� ���
 �
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	� ���� �	
2���	��, 2 ��� �	���� ����
������ �
� ��� ��
��	 �����	��$
�	 ������
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%�� 
���3���� ����	�� �
� �%�.3< �	 ��� ���� 
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 ��������� �� ���� ����
�$
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�� ����
��	�	�$ �%�.
������� ������� �	 �	���� ����	�� ��	 ��� 	��
�� �� �	
��� �
	��
��	� ����� ���� 
� ��� ����$ 1
� �%�.3%� ��� �

�
� ������ ������	 
�� ��	 ��� �	���� ������� �) %��� ��
�	���� ��� ���� ���	 �
������ �	 /60 �
� � ������	 ��
�	� 
�
���� �������$

���	 �
�����	� 1���$ ; �	� 5� � ��� ���� �%�.3%
������� �	 ������	������ �
�� �	���� ����	�� ���	 �%�.3<$
%�� ����
	 �� ��� �
��
�	�4 2� ��������� �	 �����
	 #$#� ���
������ 
� ��� ���� �
 ������� / =0 �	� /  0 �
� �%�.3< �	�
�%�.3%� ������������$ ��	�� �� �� ��������� ���� ���	 �
�� ��

�	� ��� ��� �� �� ����� ����� ����� ��
���� �
� �%�.3% ���	
�%�.3<$ %��������� �� �	 
�� �����	��� ��� �� ���� ��
����
�
� �%�.3%$ 1�
� /50� � ������
�� 	
���� ���� � �� ������ �
�
�%�.3%� ���� ����� �� ������
� �	 ����� 
� �	����
����	��$

������ ��� � �� ��� � � ��� ���� / =0

������ ��� � ��� /  0

	�62. �.	 �� /�'? �1�%"%@%� 	��	�. ���)�.A	 %� �6� ���. 5��/����5����	%�5 ��	% � 	1/�� 9

�/0�� 7
	��������� 	
������

-��' 9' /#
��
 �
��� ���
��� �
 ���'
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1
� ��� ���� ����� ����	��� �%�.3% 	���� �
 ���� �
����
� � ���� �� ��
�� ���� �� ����� �� ���� 
� �%�.3<� ���
� �� ����� ������� �� ������ ��
��$ %��� ����� �%�.3%
���������� �	 �����	� �	���� ������ ����� ����	��$ *
�����
��� �������	���� �� ���� 	
� 
	�� ��� �	��	��� 	
�� ����
��$ %��� �� 	
� �	 ����� �	 ��� ���������� ���	���

�
	������� ����� ��� ��	 �� ���	�����	� �	 ��	����$ %���
������ ��� ���	������ 	����� ��� ���� �%�.3% ��� 
���
�%�.3< �	� ���� �� ���� �������	�$ �	 ��� 	�,� �����
	� ����
� �
���	� �%�. ��� ��	����3����� �
�
�
�� ��	���3
��	� �������� ���� ������ �� �	���� 
������� �
 �� ���
���	�$

2 �� ��� ������ ������

2� ��	��
	�� �	 ��� �	��
�����
	� �,����	� �
�
�
��
��	�����	� �������� ���� �� :21 �	� �728� �

���	���
��� ����
 ����� �	� ����� ������ ���� �	����	� ��������
�
���	�����
	 ��������$ %�� �������	� �	���� ����	��
�	������ ��� ��� 	��
�� ��	����$ �%�.� 
	 ��� 
����
��	�� ��������� ��� ����� ����	��$ .
��
���� �� ��	 ��
�	�������� ��� �������� ���� �� :21 
� �728� �
 �������
������
	�� ���	� �� ���
 �,��
���	� ��� ��	���� ����	��
	 �	
�
�
�
�� ��	�����	�$ �� ������������ �
��� 
	 �
���	�	�
�%�. ��� :21$

2!� "�3�'#$� $) ��-

�	 ���� �����
	� � ������� ����	 :21� �$�$� ���
�� �%�.$
1�������
��� � ���
 �	���(� ��� ������
� ���
��������� ��
���� �� �	 ����	���� ������	� ��
�� �	 ��� �	������ 
� �%�.
�
���	�� ��� :21$ ���� �	 �	������ �� 	
� ��
����� �	
��� 
����	�� ����� �;!$ %�� :21 ���
����� �� ����� 
	 �
������
	 
� ��� ��	�
� 	��
�� �	 � 	����� 
� ������� �����

� ��(� � �� �$ %�� ����� 
� � �� ��
��	 ���� ���� ��� 	
��� �	 �
���� ��� ��������	� ��
� � �
���	� �����������$ �	 �;!� �� ��
������� ���� � ��� �
 �������4

� � ����
�

	 � ����

2� ���
��� 7 ��	
��� ��� ����
 ���	������
	 ��	��$ %��
������� 	����� 
� 	
��� �	 � ����� 2� �� ����	 �� / #0$ <�
�
���	�	� ���� ��� / "0� � ��� ���� 2 �� ������� �
 ���
	��
�� ��	���� � �� �������	� / )0$ �	 ��� �����	��� 
� ����
������ � ��

�� / #0 �	� / )0 �
 �
�� ��� ��������$

� � �

��
� ��� ����

� � �

��
� ����

��	�� ��� 	
��� �	 � ���� ��� ��������	� ��
� � �
���	�
������������ � ��	 ��� ���� ����	��	�� �
 �	������ ���
	��
�� ��������$ :21 
	�� ����� 
	� 	
�� ���� �	 ����
����� ���� ��� 
���� 	
��� ���	 ����� ����
 
��$ %
 ����	��

�� ��� �	���� �
	������
	� ��� �����	 
� ������� �
����3
�	� �� �
����� �����	 	
���$ �	 ��� ���
������� �	������� �
��	
�� ��� �	��
������ ���� 
������ 
� ���� ��
����
���
������ ��� ��	�
��$ �� ����� ��� � 	
��� �	 � �����
��� 	
�� ��� /�������0 
	�� ���	 ��� ����
 
	  E��� 
� ���
���� �	�� ������
��� ���� � ����� �
	���$ %�� �������� �	����
�
������ �
 � ���	���
 ���
�� :21 �
� � 	
�� �	 � ����
��� � 	
��� �� ������
�� ����	 ��4

�

�	

����
�� �

� �

!
� ����

8
 �	� 
��
���	���  �
� 	 ���� 	� �
��� 	 9 ����	� ���
�:
������
� �� � 	���	� ���
�) 1
� ��� ������� ���� 
� �
�	��
���� ��	�
� 	
�� ����
���	�� ��� ��
�������� 
�
����	� � 	
��� �	 � ���� ��4 

"�!� � �!

!�
� ���� ����

%�� ��������
	 
� ���� ������
	 �� ������� �
 ���� 
� ���
������ 
� � 	
�� �	 �)!$ *
����� �
�� ����� ��� 	
�
�
	���	 �	� 	
��� �� ��� �	� ��� ��
�������� 
� ����	�
� 	
��� �	 � ���� ���� ��4

"�! ! � �
 � � "�!�
"�! � �� �

�!

!�
� ���

�� ���
� ����

<� �
���	�	� / 90 �	� / 50� � ������ ���� ��� �������
�������� �	���� 
� � 	
�� ��	 ��		�	� :21 �� �,�������
�� / 60$

�

�	

����
�� �

� �� ���

�
� ��
�

; %��� �./�	/��%��	 �� "�0%�� ��"12�%� � ���' 3� ��' 3� 4/�2/.5�"/.�6 7887

 $ �� ��� ��� ����
� ; �	 ���� ����� �
� ��
���������� �
 ��
�� �
	����
	
��� �
�� /��	
��� �� <0$

-��' ;' ��
�� #
��� �
��! &� 	��"�0' -��' <' ��
�� #
��� �
��! &� 	��"��'
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2!� �	�&.�#� $) �� �$��#	�
 4#�3 ��-

2� ��������� �	 ��� �����
�� ��������
	� :21 ��������� ���
	��
�� ��	���� �
 �
	����� �	���� ���� �����	� ��� ����
�
�����	� �������� �	����$ �%�.� 
	 ��� 
���� ��	�� �����
�	���� �� �����	� �� �
� ���� ����� ����	��$ �� �	��������
������ ������� �� �
���	�	� �
�� ����
����� �	 �	 ���
�� �

�,��
�� �
�� ����	�� �	� ��	���� ����	��
	�$

�	 :21� � ���� ��	 �� ����� �� ����	� 
	� ������� 	
��
�	� ��� �������� 	
��� �����	������� ����
�� ��� ��	���
	3
����� 
� ���� ������� 	
��$ 1�
� ���� ������������ �%�. ��	
�� �	��
����� �	 � ���������
���� ��		�� �� �����	� �� ��	

	 ��� ������� 	
��$ �	 ���� ����� 	
��� �����	��� �����	
����� �	� ������ ������� �� �
���	�� �� :21$ %�� 
	� ������
	
�� �	 ��� ���� ��	� �%�. �	 ��� ���� �� �� ��������� �	
�����
	 #$ %�� �
���	� ��
�
�
� 
	�� 	���� �
 �� �
������ �

������� ������� 	
��� /
� �����0 �	����� 
� ���� 	
���$

*
����� � 	��� �
 ���	�� ��� �����	��� �� ����
��� ��	���
	����� 
� ���	� ������ �	 � ���� �� �
����� �����	
	
���� ���� �� �������� �
 �� F������ ������
	$G �	 ���

����	�� ������
	 ������ 
� :21� ��������� �	 �;!� 	
��� ����
��� ������ ������ �
 ���
�� ��� ������ ����� �
�� ����
�	������$ %
 ���
��� ��� �	�
	�����	�� 
� ����	� ��������
�������� ����� 	
��� ��	� ����
��� ��
������� �	� �����	 �

������� �������� ��
� ��� 
���� ������� �	 ����� ����$ A�
	
�������	� ���� ��
�������� ���� ������ ������� �
 �
 �
 �����

� �����	 � ������ ����� 
	 ��� �,������ �����	�	� ���� �

���� 
� �
�� 	
���� ���� �� �	������ �	 ��� ��
�������$ 8
��
���� ���� ��
������ �������� ��� ������ �
 ���� ��� ����
 
	
�
	��	�
����$

�� ������� ��	 �%�.� �� � ��
�
�� �	 
�� ������
������� ���� ���� ����� ���� ����
 ���	�� 
�� �	� ��� 	
�
������� ��� ��
������ ��������$ �� ������
�� 	��� �	
����
������
	 ������ �
 ��
�� ��� ��������	� 
������	�� 
�
�������� ������� �� 
	� ����$ 2� � �
����
	� � 	
�� ����
�	�� �
 ���
�� ��� ������ ����� ���� �� � ��	� �
 ��� �����	�
������ ���	� ������� �%�.$ �� �
�� 	
� 	��� �
 �	
 ���
�,��� 	
�� �
 ������� �� �� ��	 ������ ��� �� F�
���� ��
��� �����	� ������$G '	�� ��� ��	� �� ��� ��� ��� 	��������
�	�
�����
	 �
 ������ ��� ������
	 ��
���� �� �,���	��� 
	
��� ���� ���	�$ �� � 	
�� ��		
� �
	���� ��� �����	� ������� ��
������� ���� �� ���� /�$�$� ��� �
 �������� ���������
	0 �	�
����� 
��� ��� �
��$

���� ���� �
��������
	� �%�. �	� :21 ��	 �� �	��������
�����������$ 2� ���� ��� 
���
�
	�� �	 
�� ������ �������
� ��	 �������� 
����	 / &0 �
� ��� �������� �	���� ���	 
� �
	
�� �	 � ���� ��� � 	
���$ %��� �� ����� 
	 �,��	��	� /60�
���� ��� ���������� 
� � ��� ����	 �� / 50$ %�� �,��� ���� 
�������	�� ��� 
������� 
� ��� ������ ������
	 ��
����
/���� � ��	
��� �����
���� �	 
�� �	������ 
� :210$ 2� ��
�� ����� 
	 �%�.� � �
��� �
��� ���� ������
	 
�������
���	� /60� �� ����� �	 ���	�����$ *
����� ���	�����	� ���
���
������ ������ 
� ����� ������	�� �� ���� �	� �
��
�� 	
� �
 �
��� ��� 
������� �	 ������$

�

�	

����
�� �

� �

!

�

�
� �� �� � �� � �

� �
� ��� ����

1�
� / &0� ��� ������� �������� �	���� 
��� ��� 	
��� ��	
�� ������� �� ���	� ����� �
 /"=0� ��� ���� �� �� �� �
	�
�	 �����
	 ;$ $

�

�	

� �� ���

�

�

�
� �� �� � �� � �

� �
� ��� ��	�

1
� ��� ��	� ����� ����	�� 
� ������� ���� �������� ���
�,������
	� ��� �,����� ��� ���� �� ��� 
	�� �
� �%�.�
����	 �	 �����
	 )$ $ %�� ����
	 �� ���� ��� ������ �������
������ �� � ������� 	
�� ���� �� ���	� �%�. �� �
	� �� �����
�� 	
 �	�������	�� ��
� ��� ������ ������
	 ��
����$ 2� ����
������
	 ��
���� 
����� �� � ��������� ���� �� ���� ������
���	 ��� ��	� ����� ����� ���� �	�������	�� �� 	���������$

2!� �'�&(��#$	 $) �� �$��#	�
 4#�3 ��-

�� 	
 ������ 
�� ������ ������ 
� �%�. �
���	�� ���
:21 ���
��� ��������
	�� ����	 ��� ��� �����	�� 
� %�����  
�	� "$ %
 ����� ��� ����	��
	����� 
� ��� ������� � ����
��
��	 � � �� � 	$ %��� �
�����
	�� �
 � 	��
�� ���� ��
����� �	 ��� �
	��
��	� ������ ��� � ���� �������� ���� ���
���
����� �	� �	������ ���
 
�� ��	� ��	 ����� �� ����
�������$ 2�� ���
���� ������� ��� �������� 
���  �=== ������3
��
	 ��	�$ �	 1��$ 6� ��� �������� �	���� �� ��
���� ������ ���
	��
�� ��	���� � �
� 
�� ������ ������ 
� �%�. H :21$
�� ��	 ���
 ������ ��� ������
� 
� ���� �%�. ���
��
:21 ��
� ���� ������$ <� �
�����	� /60 �	� /"=0� � ��� ����
��� ������
� 
� �%�. ��
	� �� �������������� ��������	� �

���� 
� �%�.H:21���2 D � D = �	� D =$ 2���
���� � D =
��� 	
 �������� ���	�����	�� �� ������� �� ���
� �� �

�������(� ��� ������
� 
� �%�. 
	 ��� ���� ����� �� ����

� �%�. H :21$

2 	
�� ����� �
 ���
�� ��� ������ ����� � ��	�
� ����
�#$% �	 ��� ��	�� 
�  9 � # ��	����$ 1
� ��� ���
�������
������� � ���� ��� D = ��� �
 ��� �
����,��� 
� �
����	�
��� ������3������
	 
�������$ %��� ������ ��� ��������	����
�	 1��$ 6 �����	 ��� ���
������� �	������ �	� ��� ���������
�������� ��	
��� �� ������� �
� �%�.3< �	� �� ����	���� �
�
�%�.3%$ 1
� ��� ���� ����� 
� ��� �	����� ���� ����� ��
�%�.3< 
������
��� �%�.3%� ����
��� �
�� ��� ����	 ��
/ &0$ %�� ����
	 �� ����� �	 �%�.3%� ��� ������ ���� ��
���� ���� 
	� 
� ��� 	�����
�� �	������� ��� ������
	 ��
�����
���	 �� �� �� 	
� ���� 
� ��� ���� ������� ����$ �	 �%�.3<� ���
������ 
	�� ���� �� �� � ����
	�� �
 
���� 	
��� �	 ���
����$ *
����� �
� ��� ���� �� ��� ����� ����	�� 
� �%�.3%
�� ������� ���	 ���� 
� �%�.3<$

	�62. �.	 �� /�'? �1�%"%@%� 	��	�. ���)�.A	 %� �6� ���. 5��/����5����	%�5 ��	% � 	1/�� <

-��' C' .
����#
 
�
�� ��#��� #
��� !
����� &� � /- D 39 �����
�'
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%
 �
����� �
�� ������� �
� ������� ����	��� � ����
�	������ ��� ����� �
� �%�.3% ��� � D &"$ %��� ������� �	 �
����� ����	�� 
� =$&# ���
	��� ���� �� ��� ���� �� ���� 
�
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ABSTRACT 
In wireless sensor networks, energy efficiency is 

crucial to achieve satisfactory network lifetime. In order 
to reduce the energy consumption of a node significantly, 
its radio needs to be turned off. Yet, some nodes have to 
participate in multi-hop packet forwarding. We tackle 
this issue by exploiting two degrees of freedom in 
topology management: the path setup latency and the 
network density. First, we propose a new technique 
called Sparse Topology and Energy Management 
(STEM), which aggressively puts nodes to sleep. It 
provides a method to wake up nodes only when they 
need to forward data, where latency is traded off for 
energy savings. Second, STEM integrates efficiently 
with existing approaches that leverage the fact that 
nearby nodes can be equivalent for traffic forwarding. In 
this case, an increased network density results in more 
energy savings. We analyze a hybrid scheme, which 
takes advantage of both setup latency and network 
density to increase the nodes’ lifetime. Our results show 
improvements of nearly two orders of magnitude 
compared to sensor networks without topology 
management. 

 
Keywords : Sensor networks, energy efficiency, topology 
management. 
 
 
1. INTRODUCTION 
1.1. Sensor Networks 

Advances in microelectronic fabrication have 
allowed the integration of sensing, processing and 
wireless communication capabilities into low-cost and 
small form-factor embedded systems  called sensor nodes 
[1][2]. The need for unobtrusive and remote monitoring 
is the main motivation for deploying a sensing and 
communication network (sensor network) consisting of a 
large number of these battery-powered nodes. For 

example, such systems could be used either outdoors in 
inhospitable habitats, disaster areas, or indoors for 
intrusion detection or equipment monitoring. The nodes 
gather various sensor readings, process them and forward 
the processed information to a user or, in general a data 
sink. This forwarding typically occurs via other nodes 
using a flat or clustered multi-hop path [3][9]. Thus a 
node in the network essentially performs two different 
tasks: (1) sensing its environment and processing the 
information and, (2) forwarding traffic as an intermediate 
relay in the multi-hop path. 

 
However, the convenience of autonomous remote 

monitoring comes at a price: an extreme design focus 
must be placed on energy efficiency as the sensor nodes 
operate on a small battery with limited capacity [1][2][3]. 
It is important to view the problem as one of extending 
the lifetime of the network, rather than just that of the 
individual nodes. Thus, in addition to improving the 
efficiency of the nodes, techniques that tackle the 
problem on the level of the entire network are necessary. 
This is especially true for the traffic forwarding 
functionality of the network, as the main energy 
consumer in a node is the communication subsystem 
[1][3][4]. Our paper explores this category of network-
wide techniques, more specifically dealing with topology 
management. 

 
1.2. Topology Management 

Topology management is an important issue because 
the only way to save power consumption in the 
communication subsystem is to completely turn of the 
node’s radio, as the idle mode is almost as power hungry 
as the transmit mode [4]. However, as soon as a node 
powers down its radio, it is essentially disconnected from 
the rest of the network topology and therefore can no 
longer perform packet relaying. For simplicity, we refer 
to this state as the node being asleep, although only its 
radio is turned off. The sensors and processor can still be 
active, as they are much less power hungry. 
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The goal of topology management is to coordinate 
the sleep transitions of all the nodes, while ensuring that 
data can be forwarded efficiently to the data sink. 
Existing topology management schemes, such as the 
ones described in references [5] and [6], are based on the 
observation that in typical scenarios, some nodes can be 
asleep without sacrificing significant data forwarding 
capacity. As density increases, more nodes can be 
sleeping, resulting in further energy savings. However, 
major savings would require extremely dense networks, 
as we will illustrate in this paper. 

 
We propose a different approach to topology 

management, which exploits the time dimension rather 
than the density dimension. Strictly speaking, nodes only 
need to be awake when there is data to forward. We refer 
to this situation as the network being in the ‘transfer 
state’, and in many practical scenarios, this is a rather 
infrequent event. Most of the time, the sensor network is 
only monitoring its environment, waiting for an event to 
happen, and nodes can be asleep. For a large subset of 
sensor net applications, no data needs to be forwarded to 
the data sink in this ‘monitoring state’. Consider for 
example a sensor network that is designed to detect brush 
fires. It has to remain operational for months or years, 
while only sensing if a fire has started. Once a fire is 
detected, this information should be forwarded to the 
user quickly. Even when we want to track how the fire 
spreads, it probably suffices for the network to remain up 
only for an additional week or so. Similar observations 
hold for applications such as surveillance of battlefields, 
machine failures, room occupancy, or other reactive 
scenarios, where the user needs to be informed once a 
condition is satisfied. 

 
In the monitoring state, no communication capacity is 

needed, in principle at least. As there is no data to 
forward, the communication energy could be completely 
eliminated, by simply turning off the radios of all nodes. 
If the need for data forwarding is very rare, the energy 
savings could be phenomenal. However, there is a 
crucial caveat: if a node detects an event, it cannot 
forward the data to the user since all the nodes on the 
multi-hop path are asleep. If a node has turned off its 
radio, it will stay completely oblivious of the efforts of 
other nodes to communicate with it. This is the main 
dilemma in topology management for sensor nets: a 
node’s radio should be turned off to save energy, yet be 
left on so the node can know when other nodes need it to 
forward their traffic.  Our topology management scheme, 
called STEM (Sparse Topology and Energy 
Management), solves this issue and trades off energy 
consumption versus latency of switching back to the 
transfer state.  

 

Furthermore, we would like to develop a topology 
management scheme that marries the benefits of both 
classes discussed previously, namely those that exploit 
network density and those that exploit setup latency. 
Ideally, this hybrid solution combines the savings in both 
dimensions fully, such that a ten-fold energy reduction in 
both schemes separately would result in a combined 
hundred-fold reduction. This basically requires these 
base schemes to be orthogonal in using the independent 
dimensions of latency and density. We propose such a 
very effective hybrid scheme in this paper, by combining 
STEM with techniques that leverage the network density. 

 
 

2. RELATED WORK 
For routing in sensor networks, two alternative 

approaches have been considered: flat multi-hop and 
clustering. Although STEM is applicable to both of 
them, we mainly focus on flat multi-hop routing [3]0[8]. 
For clustered approaches [9], which are possibly 
hierarchical, our scheme can be used to reduce the 
energy of the cluster heads, although the gains are 
expected to be less dramatic here. 

 
Recently, topology management techniques, called 

SPAN [5] and GAF [6], have been proposed for flat 
multi-hop routing. They operate on the assumption that 
the network capacity needs to be preserved. As a result, 
the energy consumption is approximately the same 
whether the network is in the transfer or monitoring 
state, as no distinction is made between them. Both 
techniques trade off network density for energy savings. 
The performance of STEM is independent of network 
density. It operates in an orthogonal dimension, that of 
setup latency. Our hybrid scheme, which we describe in 
section 6, leverages both network density and latency. 

 
With SPAN [5], a limited set of nodes forms a multi-

hop forwarding backbone that tries to preserve the 
original capacity of the underlying ad-hoc network. 
Other nodes transition to sleep states more frequently, as 
they no longer carry the burden of forwarding data of 
other nodes. To balance out energy consumption, the 
backbone functionality is rotated between nodes, and as 
such, there is a strong interaction with the routing layer. 

 
Geographic Adaptive Fidelity (GAF) [6] exploits the 

fact that nearby nodes can perfectly and transparently 
replace each other in the routing topology. The sensor 
network is subdivided into small grids, such that nodes in 
the same grid are equivalent from a routing perspective. 
At each point in time, only one node in each grid is 
active, while the others are in the energy-saving sleep 
mode. Substantial energy gains are, however, only 
achieved in very dense networks. We will discuss this 
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issue further on in this paper, when we integrate STEM 
with GAF. 

 
An approach that is closely related to STEM is the 

use of a separate paging channel to wake up nodes that 
have turned off their main radio [10]. However, the 
paging channel radio cannot be put in the sleep mode for 
obvious reasons. This approach thus critically assumes 
that the paging radio is much lower power than the one 
used for regular data communications. It is yet unclear if 
such radio can be designed. STEM basically emulates the 
behavior of a paging channel, by having a radio with a 
low duty cycle radio, instead of a radio with low power 
consumption. 

 
The work of McGlynn et al [14] describes an 

algorithm that resembles STEM. However, it is designed 
to discover the neighbors of all the nodes some time after 
the network deployment. The goal is to let the network 
be dormant during deployment, and once the discovery 
phase starts, learn the complete topology with a high 
probability. In principle, this  algorithm could also be 
used to set up a path like STEM. However, it is less 
aggressive, and would result in much larger setup 
latency, as a node only sends out setup request 
probabilistically. Furthermore, it does not guarantee 
discovery of a link. 

 
 

3. SPARSE TOPOLOGY MANAGEMENT 
3.1. Basic Concept 

In the application scenarios we consider in this paper, 
the sensor network is in the monitoring state the vast 
majority of its lifetime. Ideally, we would like to only 
turn on the sensors and some preprocessing circuitry. 
When a possible event is detected, the main processor is 
woken up to analyze the data in more detail. The radio, 
which is normally turned off, is only woken up if the 
processor decides that the information needs to be 
forwarded to the data sink. Of course, different parts of 
the network could be in monitoring or transfer state, so, 
strictly speaking, the ‘state’ is more a property of the 
locality of node, rather than the entire network. 

 
Now, the problem is that the radio of the next hop in 

the path to the data sink is still turned off, if it did not 
detect that same event. As a solution, each node 
periodically turns on its radio for a short time to listen if 
someone wants to communicate with it. The node that 
wants to communicate, the ‘initiator node’, sends out 
beacons with the ID of the node it is trying to wake up, 
called the ‘target node’. In fact, this can be viewed as the 
initiator node attempting to activate the link between 
itself and the target node. As soon as the target node 

receives this beacon, it responds to the initiator node and 
both keep their radio on at this point. If the packet needs 
to be relayed further, the target node will become the 
initiator node for the next hop and the process is 
repeated. 

  
3.2. Dual Frequency Setup 

Once both nodes  that make up a link have their radio 
on, the link is active, and can be used for subsequent 
packets. In order for actual data transmissions not to 
interfere with the wakeup protocol, we propose to send 
them in different frequency bands using a separate radio 
in each band. Sensor nodes developed by Sensoria 
Corporation [11], for example, are already equipped with 
two radios. We will discuss the benefits of this dual radio 
setup in more detail in the next subsection. 

 
Figure 1 shows the proposed radio setup. The wakeup 

messages, which were discussed in subsection 3.1, are 
transmitted by the radio operating in frequency band f1. 
We refer to these communications as occurring in the 
‘wakeup plane’. Once the initiator node has successfully 
notified the target node, both nodes turn on their radio 
that operates in frequency band f2. The actual data 
packets are transmitted in this band, or what we call the 
‘data plane’. 

 
 

 
 
 
 
 

Figure 1 - Radio setup of a sensor node 
 
 
3.3. STEM Operation 

Figure 2 presents an example of typical radio mode 
transitions for one particular node in the network. Some 
representative power numbers for the different radio 
modes are summarized in Table I. These numbers 
correspond to the TR1000 radio from RF Monolithics 
[15] where the transmit range is set to approximately 20 
meters [4]. This low-power radio has a data rate of 2.4 
Kbps and uses OOK modulation. 

 
 

Table I. Radio power characterization 
Radio mode Power consumption (mW) 

Transmit (Tx) 14.88 
Receive (Rx) 12.50 

Idle 12.36 
Sleep 0.016 

Wakeup plane:  f1 

 

Data plane:  f2 
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At time t1, the node wants to wake up one of its 
neighbors and thus becomes an initiator. It starts sending 
beacon packets on frequency f1, until it receives a 
response from the target node, which happens at time t2. 
At this moment, the radio in frequency band f2 is turned 
on for regular data transmissions. Note that at the same 
time, the radio in band f1 still wakes up periodically from 
its sleep state to listen if any nodes want to contact it.  
After the data transmissions have ended (e.g. at the end 
of a predetermined stream of packets, after a timeout, 
etc.), the node turns its radio in band f2 off again. At time 
t4, it receives a beacon from another initiator node while 
listening in the f1 band. The node responds to the initiator 
and turns its radio on again in band f2. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3 – Radio on-time in the wakeup plane 

 
 

In order for the target node to receive at least one 
beacon, it needs to turn on its radio for a sufficiently long 
time, denoted as TRx. Figure 3 illustrates the worst-case 
situation where the radio is turned on just too late to 
receive the first beacon. In order to receive the second 
beacon, TRx should be at least as long as the transmit time 
B1 of a beacon packet, plus the inter-beacon interval TB. 

 

If we were to use one radio operating in just one 
frequency band, there would be interference between the 
wakeup and data plane. Consider Figure 4, which shows 
an ongoing data transfer from node A to B. Node C tries 
to set up the link to D, and might not be aware of the 
ongoing transmission. During this polling mode, it 
aggressively sends beacons in order to avoid missing the 
short time D is listening. This way, C will use all the 
channel capacity, and essentially acts as a jammer to B. 
Despite possible recovery action from the Medium 
Access Control (MAC) layer, the data communication 
between A and B will suffer from extra delays. We might 
allow the setup procedure to be relatively long, as it only 
occurs once at the start of a communication epoch. 
However, such long disruptions of ongoing transmissions 
are typically undesirable. Using one radio that switches 
between two frequencies could solve this problem, but in 
that case the regular data transmissions need to be 
interrupted periodically to listen in the wakeup plane. 
This is cumbersome, and as integrated radios are ever 
getting cheaper, we have opted for the dual radio setup. 
All the results in this paper, however, remain valid for a 
single radio that switches frequency, but regular data 
communications will be more complex.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Interference between the wakeup and the 
transfer plane in the case of one frequency 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 – State transitions of STEM for a particular node 
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Even in the case of two radios, collisions in the 
wakeup plane are possible. For example, consider Figure 
5 that shows a scenario where nodes A and B 
simultaneously try to wake up the same target node C. In 
this case the beacons from A and B will collide at C. 

 
 
 
 
 
 
 
 
 

   
Figure 5 – Collisions on the wakeup plane 

 
 

To handle this problem, we add extra provisions to 
the basic STEM operation we discussed thus far. A node 
also turns on its data radio when there is a collision in the 
wakeup plane. It does not truly receive packet, but it can 
detect the presence of signal energy, which is similar to 
the principle of carrier sensing. In this case, it does not 
send back an acknowledgement, as it would likely 
collide with that of other nodes that are also woken up 
this way. In our example , both C and D turn on their 
radio in the data plane, since the beacons from A and B 
collide. Node E receives the beacon from A correctly, 
and does not wake up, as the beacon tells it that the 
intended node is C.  

  
After waiting for a response from the target node for 

time T, the initiator starts transmitting on the data plane. 
Indeed, the target node will either have received the 
beacon correctly or seen a collided packet, as it surely 
has woken up once during this period (see Figure 2). In 
any case, it has turned on the radio in the data plane. If 
there is no collision, we chose to send back an 
acknowledgement, since the initiator knows immediately 
when the target node is up. This shortens the setup 

latency, as will also follow from the analytical analysis 
of section 4.1. 

 
If nodes do not receive data for some time, they time 

out and go back to sleep. This happens to nodes that 
were woken up accidentally, like D. Eventually only the 
desired target node keeps its data-plane radio on for the 
duration of the data transfer. The regular MAC layer 
handles any collision that takes place on the data plane.  

 
 

4. THEORETICAL ANALYSIS OF STEM 
4.1. Setup Latency 

Before simulating our protocol, we first develop a 
theoretical model of the system performance. We define 
the setup latency TS of a link as the interval from the 
time the initiator starts sending out beacons, to the time 
both nodes have turned on the radio in the data plane. 
Typically the target and originator node are not 
synchronized, which means that the beacon sending 
process starts at a random point in the cycle of the target 
node. As a result, the start of the first beacon is 
distributed uniformly random in interval T. Figure 6 
shows the values of TS, normalized versus the inter-
beacon spacing TB, for different start times of the beacon 
sending process. Furthermore, the transmission time of a 
beacon acknowledgment is B2 and we use the shorthand 
notation B1+2 = B1 + B2. 

 
First, we carry out this analysis for the case where no 

collisions take place in the wakeup plane. It is clear that 
TS is equal to B1+2  plus an integer multiple of TB. If the 
initiator node starts the wakeup process in the region that 
is labeled i in Figure 6 (i = 1..K), the setup latency is 
equal to i· TB + B1+2 . The reason is that beacon i+1 is the 
first one to fall entirely within the interval of length TRx 
when the target node’s radio is on.  The probability of 
being in region i is equal to the length of that region 
divided by T. As a result, for T > TRx, the statistics of TS 
are derived from Figure 6 as: 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – Analysis of the setup latency 
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 (1) 
 
 
 
 
 
 
 
 
 
 
Based on this equation, the average setup latency per 

hop can be calculated as being equal to: 
 
 

 (2) 
 
 
The variables δ and ε, which we introduced to 

simplify the notation of (2), are defined as:  
 
 (3)  
 
 
 
 (4) 
 
We have verified that in practical scenarios, the last 

term in (2) is negligible, resulting in: 
 
 
 (5) 
 
 
In addition, T is typically substantially larger than 

TRx, such that we can further simplify this expression to: 
 
 
 
 
 (6) 

 
 
The above equations are valid on condition that T > 

TRx. For the special case when there is no sleep period, T 
= TRx, the average setup delay is equal to: 

 
 (7) 
 
Thus far, we assumed that there are no collisions in 

the wakeup plane. If setup packets collide in the wakeup 
plane, the initiator nodes will eventually time out after 

time T, as discussed in the previous section. This means 
that the setup latency in this case is equal to: 

 
 (8) 
 
 

4.2. Energy Savings 

Next, we derive expressions for the energy savings 
resulting from running STEM. The total energy 
consumed by a node during a time interval t can be 
broken up into two components, one for each frequency 
band.  

 
  (9) 
 
 
Equation (10) details the energy consumption in the 

wakeup plane. The first term accounts for the listening 
cycle, where Pnode is given by (11). In this equation P0

node 
is a combination of idle and receive power. The second 
term in (10) represents the energy of transmitting and 
receiving beacon and response packets (Psetup is thus a 
combination of transmit, receive and idle power). 

 
 (10) 
 
 
 
 (11) 
 
 
The energy consumption in the data plane is given by 

(12). In this equation, tdata is the total time the radio is 
turned on in the data plane. As a result, Pdata contains 
contributions of packet transmission, packet reception 
and idle power. 

 
 (12) 
 
 
Without topology management, the total energy 

would be equal to (13). Although Pdata also contains 
contributions of Pidle, we have chosen to split up the 
energy consumption in analogy with (12) for ease of 
comparison. The main difference is that the radio is 
never in the energy-efficient sleep state here. 

 
  (13) 
 
 
We evaluate the benefits of STEM, by considering 

the relative energy, which is defined as: 
 
 (14) 
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The energy savings can be evaluated by combining 
(9)-(14). Since transmit, receive and idle power are very 
similar, see Table 1, we can approximate Pidle ≈ Pdata ≈ 
Psetup ≈ P0

node ≈ P. Furthermore, we note that Psleep << P, 
which allows us to write the relative energy as (15), after 
appropriate simplifications.  

 
 
 (15) 
 
 
tsetup is the total time spent setting up the link in the 

wakeup plane. We define the time to do one setup as 
t1setup and the number of such setups per second, or the 
setup frequency, as fS. When T is not too small, t1setup is 
close to T/2 if there are no collisions, see (6). In case, we 
make the following simplifications: 

 
 (16) 
 
 
 
 (17) 
 
 
Similarly, tdata  can be split up in bursts of average 

duration tburst, where a burst of data transfer requires one 
link setup. Consequently, the fraction of time the data-
plane radio is turned on, which we define as α, can be 
written as (18). We note that α corresponds directly to 
the relative importance of the transfer state. 

 
 (18) 
 
 
Finally, we call β the inverse of the duty cycle in the 

wakeup plane: 
 
 (19) 
 
With the above definitions and simplifications, (15) 

can be rewritten as (20) or (21). 
 
 
 (20) 
 
 
 
 (21) 
 
 
It is clear that the energy savings are larger when β 

increases, by extending the period T. This results in 
larger setup latencies, as can be seen from (6). The 
energy savings are also larger, when the transfer state 

becomes smaller, and fewer setups are needed. The last 
term in (20) and (21) presents a floor to the energy, as 
the best we can do is to have the two radios sleeping all 
the time. 

 
Since the node has a finite battery capacity, the 

energy savings directly correspond to the same relative 
increase in the node’s lifetime, which ultimately results 
in a prolonged lifetime of the sensor network. 

 
 

5. STEM PERFORMANCE EVALUATION 
5.1. Simulation Setup 

In this section, we verify our algorithm and 
theoretical analysis through simulations, which were 
written on the Parsec platform, an event-driven parallel 
simulation language [12]. We distribute N nodes in a 
uniformly random fashion over a field of size L x L. 
Each node has a transmission range R.  

 
For a uniform network density, the probability Q(n) 

for a node to have n neighbors in a network of N  nodes is 
given by the binomial distribution of (22), when edge 
effects are ignored. In this equation, QR is the probability 
of a node being in the transmission range of a particular 
node, given by (23).†  

 
 (22) 
 
 
 (23) 
 
 
For large values of N, tending to infinity, this 

binomial distribution converges towards the Poisson 
distribution (24) [13]. The network connectivity is thus 
only a function of the average number of neighbors of a 
node, denoted by parameter λ. 

 
 (24) 
 
 
 (25) 
 
 
Since traffic communication patterns depend solely 

on the network connectivity, we only have to consider λ 
and not N, R and L separately. This statement was 
verified through simulations, and we therefore can 
characterize a uniform network density by the single 
parameter λ.  

                                                                 
† We use the symbol Q in this paper for probabilities, to avoid 
confusion with power (denoted by P). 
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Without STEM 

β = 2.67 

β = 5.33 

β = 13.33 

α
1

In our simulations, we have chosen R = 20 m, which 
corresponds to the numbers in Table I. The area of the 
sensor network is such that for N = 100, we have λ = 20. 
Furthermore, our setup includes a CSMA-type MAC, 
similar to the DCF of 802.11. Table II lists the other 
simulation settings, where Lbeacon and Lresponse are the 
sizes (including MAC and PHY header) of the beacon 
and the response packets respectively. 
 
 

Table II. Simulation settings 
R 20 m  Rb 2.4 Kbps 
L 79.27 m  TB 150 ms  

Lbeacon 144 bits   TRx 225 ms  
Lresponse 144 bits    
 
 

The node closest to the top left corner detects an 
event and sends 20 information packets of 1040 bits to 
the data sink with an inter-packet spacing of 16 seconds. 
The total time for the data transfer, tdata , is thus about 320 
seconds. Since there is only one data burst, fS is equal to 
the inverse of the total simulation time. The data sink is 
the sensor node located closest to the bottom right corner 
of the field. We have observed that the average path 
length is between 6 and 7 hops.  All reported results are 
averaged over 100 simulation runs. 
 
5.2. Simulation Results 

Figure 7 shows the normalized average setup latency 
per hop as a function of the inverse duty cycle β.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 7 – Average setup latency of STEM 

Clearly the simulation results, denoted by the 
markers, agree well with the theoretical analysis. We 
observed that the exact result (2) and simplified 
equations (5)-(6) resulted in virtually indistinguishable 
curves. This confirms that the applied approximations 
are indeed appropriate for the chosen settings.  
 

In Figure 8, the normalized total energy is plotted 
versus 1/α. As defined in the previous section, α 
represents the fraction of time in the transfer state. As a 
basis for comparison, we included the curve for a scheme 
without topology management, which corresponds to 
(13). For fair comparison, there is only one radio in this 
base scheme, which is never turned off. The other curves 
represent the performance for STEM with different 
values of β. The theoretical results, plotted using solid 
lines, are obtained by multiplying the curve without 
topology management by E/E0, given by (20). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 – Relative energy savings of STEM versus the 
predominance of the transfer state 

 
 
As 1/α increases, the monitoring state becomes more 
predominant. We observe that STEM results in energy 
savings as soon as 1/α > 2, which means that the 
network is in the transfer state about half of the time. 
When the network is in the monitoring state about 99% 
of the time, we can already exploit the full benefits of 
STEM. 
 

Figure 9 explicitly shows the tradeoff between energy 
savings and setup latency, for different values of α. The 
solid theoretical curves are obtained from (20) and (6), 
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and we observe again the close correspondence to 
simulated values. The energy gains of STEM are 
substantial, and can be traded off effectively with setup 
latency. For example, in the regime where the network is 
in the monitoring state 99% of the time (α = 0.01), a ten-
fold decrease of energy consumption requires only a 
setup latency of about 1.3 seconds per hop. Note that we 
have used a relatively slow radio with a bit-rate of just 
2.4 Kbps. By choosing a radio that is 10 times faster, this 
latency would be a mere 130 ms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 – Energy – setup latency tradeoff of STEM 
 
 
 

6. COMBINING STEM AND GAF 
As mentioned in the introduction, existing topology 

management schemes, such as GAF and SPAN, 
coordinate the radio sleep and wakeup cycles while 
ensuring adequate communication capacity. The 
resulting energy savings increase with the network 
density. STEM, on the other hand, leverages the setup 
latency. Moreover, it can be integrated with schemes as 
GAF or SPAN, to achieve additional gains by also 
exploiting the density dimension in topology 
management. We specifically focus on combining STEM 
with GAF. 
 
6.1. Behavior of GAF 

In this subsection, we discuss plain GAF, i.e., without 
STEM. Furthermore, we also analyze its behavior 
theoretically, as this is an essential build ing block in the 
analysis of STEM combined with GAF. Such analysis 
was not provided in the original GAF paper [6]. 

The GAF algorithm is based on a division of the 
sensor network in a number of virtual grids of size r by r, 
see Figure 10. The value of r is chosen such that all 
nodes in a grid are equivalent from a routing perspective 
[6]. This means that any two nodes in adjacent grids 
should be able to communicate with each other. By 
investigating the worst-case node locations depicted in 
Figure 10, we can calculate that r should satisfy (26) [6]. 
 

 (26) 
 
 
 
 
 
 
 
 

Figure 10 – GAF grid structure 
 
 
The average number of nodes in a grid, M, is given 

by (27). By combining this  with (26), we see that M 
should satisfy (28). In the remainder of this paper, we 
choose (26) and (28) to hold with equality.  

 
 (27) 
 
 
  (28) 
 
Since all nodes in a grid are equivalent from a routing 

perspective, we can use this redundancy to increase the 
network lifetime. GAF only keeps one node awake in 
each grid, while the other nodes put their radio off. To 
balance out the energy consumption, the burden of traffic 
forwarding is rotated between nodes. In the theoretical 
analysis, we ignore the unavoidable time overlap of this 
process associated with handoff. If there are m nodes in a 
grid, the node will (ideally) only turn its radio on 1/mth of 
the time and therefore will last m times longer. 

 
When distributing nodes over the sensor field, some 

grids will not contain any nodes at all. We use θ to 
denote the fraction of used grids, i.e., which have at least 
one node. As a result, the average number of nodes in the 
used grids is equal to M’, given by:  

 
 (29) 
 
 
The average power consumption of a node using 

GAF, GAF
nodeP , is equal to (30). In this equation, Pon is the 
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power consumption of a node if GAF would not be used. 
It thus contains contributions of receive, idle and 
transmit mode, as the node would never turn its radio off. 
With GAF, in each grid only one node at a time has its                       
radio turned on, so the total power consumption of a 
grid, Pgrid , is virtually equal to Pon (neglecting the sleep 
power of the nodes that have their radio turned off). 
Since M’ nodes share the duties in a grid equally, the 
power consumption of a node is 1/M’ that of the grid, as 
in (30). 

 
 (30) 
 
 
The average relative energy for a node is thus given 

by: 
 
 (31) 
 
 
Alternatively, we see that the lifetime of each node in 

the grid is increased with the same factor M’. As a result, 
the average lifetime of a grid, gridt , i.e., the time that at 
least one node in the grid is still alive, is given by (32), 
where tnode is the lifetime of a node without GAF. We 
can essentially view a grid as being a ‘virtual node’, 
composed of M’ actual nodes. 

 
 (32) 
 
 
Note that GAF

nodeP  and gridt , which are averages over 

all grids, only depend on M’ and not on the exact 
distribution of nodes in the used grids! Of course, the 
variance of both the node power and the grid lifetime 
depends on the distribution.  If we would have full 
control over the network deployment, we could make 
sure that every used grid has exactly M’ nodes, which 
minimizes the power and lifetime variance. 

 
For the special case of a random node distribution, 

we now calculate the statistics exactly. The probability 
Q(m) of having a grid with m nodes is given by (33). The 
derivation is analogous that the one leading to (24).   

 
 (33) 
 
 
In this case, the fraction θ of used grids is equal to: 
 
 (34) 
 
The probability of having m nodes in a used grid is 

given by: 
 

 
 (35) 
 
 
We also know that the probability that the power of a 

node is equal to 1/mth of that in a grid, is the same as the 
probability of a node being in a grid with m nodes: 

 
 
 (36) 
 
 
Alternatively, equation (37) gives the probability that 

the lifetime of a grid is m times that of an individual 
node. 

 
 
 
 (37) 
 
 
We verify from (36) and (37) that the average values 

of GAF
nodeP  and tgrid are indeed equal to (30) and (32). 

 
6.2. Analysis of STEM combined with GAF 

As discussed in the previous subsection, GAF 
leverages the network density to conserve energy, while 
leaving the data forwarding capacity intact. STEM, on 
the other hand, saves energy by trading it off with path 
setup latency. We anticipate better results by combining 
both approaches, in an effort to exploit both latency and 
density dimensions. Fortunately, STEM and GAF are 
essentially orthogonal to each other, as we discuss next, 
such that the resulting energy gains leverage the full 
potential of both techniques.  

 
In GAF, a grid can be viewed as having one virtual 

node, and the physical nodes alternatively perform the 
functionality of that virtual node. From this perspective, 
STEM can be introduced in a straightforward manner by 
letting it run on the virtual node. In real life, nodes 
alternate between sleep and active states, as governed by 
GAF. The one active node in the grid, runs STEM in the 
same way as described in section 3. The routing protocol 
only needs to be modified to address virtual nodes (or 
grids), instead of real nodes. 

 
However, we need to change the mechanism by 

which the functionality of being active in a grid is rotated 
between nodes, which is referred to as ‘leader election’. 
In the original election scheme of GAF [6], nodes that 
are asleep decide to become the leader after some time 
interval. To resolve the inconsistency of having multiple 
leaders, these nodes send periodic broadcasts and listen 

M
gridP

M
onPGAF

nodeP
′

=
′

=

Mnodetgridt ′⋅=

Me
m

mMmQ −⋅=
!

)(

Me

Me
m

mM
mQ

mQmmQ
−−

−
⋅=

≥
=≥

1!)1(
)()1(

Me
m

mM
M

mQm
m

gridP
GAF
nodePQ −⋅

−

−
=

⋅
==

)!1(

1)(
)(

MeQ −−=−= 1)0(1θ

)1()( ≥=⋅= mmQmnodetgridtQ

MtonP

tGAF
nodeP

E
E

′
=

⋅

⋅
= 1

0

Me

Me
m

mM
−−

−
⋅=
1!

175



  

0E
E

λ 

GAF 

STEM + GAF 
β = 4 
β = 6 
β = 8 

to similar messages from the other leaders in their grid. 
Upon receiving such broadcasts, each leader decides to 
go to sleep or remain a leader based on the expected 
remaining time to live of both nodes, which is included 
in the broadcasts. Note that this procedure requires leader 
to have its radio on continuously.  

 
However, if leaders run STEM, as we propose in our 

hybrid scheme, they have their data radio turned off and 
will not receive the broadcast messages. We therefore 
need another election scheme to avoid the persistent 
occurrence of multiple leaders is one grid. As a solution, 
a node that wants to become the leader, first sets up a 
link to the current leader using regular STEM. It does not 
need to know the exact node to address, as it can simply 
wake up ‘whoever is the current leader’. Once the link is 
set up, the necessary information to decide the election 
process is exchanged on the data plane. If a node cannot 
contact the current leader, it assumes that it died (e.g. due 
to physical destruction) and takes over its role.  

 
With this modification, STEM and GAF can be 

integrated effectively. As they are orthogonal in our 
hybrid scheme, we can directly obtain expression (38) 
for the relative energy gain of a node in a grid with m 
nodes. This is based on expanding (20), where the 
statistics of m are given by (36). The extra term ∆ 
represents the overhead of the leader election process 
(which we ignored previously in our analysis of GAF). 

  
 
 (38) 
 
 
 
From (38), the average relative energy over all nodes 

can be derived as being equal to (39), the same way as 
was done in section 6.1. 

 
 
 (39) 
 
 
 
For the link setup latency of regular data traffic, the 

expressions are exactly the same as the ones for STEM, 
given in section 4.1. The reason is that the leader appears 
simply as a virtual node that is using STEM, as long as 
there is no interference from the leader election process. 
As this election process occurs at a timescale that is 
much larger than the link setup time, such interference is 
negligible. 

 
 
 
 

6.3.  Evaluation of STEM combined with GAF 

We now verify our hybrid scheme of STEM 
combined with GAF through simulations, again with the 
settings of Table I and Table II. A node decides to try to 
become the leader after a random time in the range of 
800 to 1200 seconds. Furthermore, to limit the 
dimensionality of the graphs, we have chosen α = 0. This 
corresponds to a network that is always in the monitoring 
state, but we have verified that the algorithm and 
analysis also work fine when there is traffic . All reported 
results are averaged over 1000 simulations.  

 
In Figure 11, the relative energy is plotted versus the 

network density λ, for GAF and our hybrid scheme of 
STEM+GAF. We have simulated this hybrid scheme for 
different values of the inverse duty cycle β. For the 
theoretical values, we have set ∆ = 0, for reasons we 
explain later. Clearly the simulations correspond for the 
most part to the theoretical analysis. The discrepancies 
are due to ignoring the overheads of the leader election 
process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11 – Relative energy saving versus density for 
GAF and GAF+STEM 

 
 
For the combination of STEM and GAF, these 

discrepancies are larger when λ or β increase because of 
two reasons. First, when the absolute energy decreases, 
the relative impact of overheads becomes larger. Second, 
collisions between leader elections increase the 
overhead. Such collisions are more likely when the 
network density λ is higher, or when β increases and 
leader election takes more time. This effect is hard to 
describe analytically. For the settings we used, both the 
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first and second effect need to be taken into account to 
explain the discrepancies observed in Figure 11. As the 
collisions are hard to model, we chose to simply set ∆ = 
0 in our analysis. 

 
However, in our simulations, a node tries to become a 

leader relatively often (about every 1000 seconds). In 
more realistic scenarios, the election process is likely to 
operate at a much larger timescale, such that overheads 
would be negligible in the operating region plotted in 
figure 11. Thus, we anticipate even better results in 
realistic settings. We chose such frequent leader election, 
since otherwise the simulations would take an 
impractical amount of time. Although not shown here, 
we also verified that the link setup latency is similar to 
that of STEM alone. 

 
     Figure 12 compares the performance of STEM, 

GAF and our hybrid scheme, based on simulations. All 
overheads are therefore taken into account here. First of 
all, we observe that the energy savings of GAF are 
moderate, except for high network densities. The reason 
is that the average number of nodes in a grid is fairly 
low, as can be seen from (28)-(29). For example, the 
number of nodes in a used grid, M’, is smaller than 2 and 
the energy savings are thus less than 50% for densities of 
λ ≤ 25. To put this into perspective, λ = 25 corresponds 
to a topology where each node has 25 neighbors on 
average. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 – Comparison of GAF, STEM and 
GAF+STEM 

 
 

STEM, on the other hand, is independent of the 
network density. More energy savings are obtained by 
allowing an increased link setup latency, the value of 
which can be found in Figure 7 for each choice of β. 
Even for the low bit rate radio we have chosen, the 
energy is reduced by a factor of 4 by allowing about 500 
ms of setup latency per hop. A combination of STEM 
and GAF leverages both dimensions, resulting in energy 
savings of almost two orders of magnitude. 

 
We observed that the absolute value of the overhead 

is largest for this hybrid scheme. It nevertheless 
continues to outperform STEM or GAF, except for 
extremely high setup latencies or extremely high 
densities, which are far beyond any practical values. The 
combination of STEM and GAF thus performs well at 
any reasonable operating point in the latency-density 
dimensions, exploiting both of them as much as possible. 
Even at low densities or low latencies, the other 
dimension can be traded off for energy savings. The 
gains are compounded when both dimensions can be 
exploited together. 

 
 

7. CONCLUSIONS 
In this paper, we have introduced STEM, a topology 

management technique that trades off power savings 
versus path setup latency in sensor networks. It emulates 
a paging channel by having a separate radio operating at 
a lower duty cycle. Upon receiving a wakeup message, it 
turns on the primary radio, which takes care of the 
regular data transmissions. Our topology management is 
specifically geared towards those scenarios where the 
network spends most of its time waiting for events to 
happen, without forwarding traffic. 

 
We have also proposed a hybrid scheme, which 

exploits both setup latency and network density to 
improve the energy savings. STEM is integrated with 
GAF in an orthogonal fashion, such that the benefits of 
both approaches are utilized to their full extend. The 
gains are superior to those of any of the two schemes 
separately, for all practical operating points. Compared 
to a network without topology management, a 
combination of STEM and GAF can easily reduce the 
energy consumption to 10% or less. Alternatively, this 
results in a node lifetime increase of a factor 10 or more.  

 
Increased energy savings can be obtained at the cost 

of either deploying more nodes or allowing more setup 
latency per hop. These choices are essentially part of a 
multi-dimensional design tradeoff, which is impacted by 
the specific application, the layout of the network, the 
cost of the nodes, the desired network lifetime, and many 
other factors. 
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Abstract

Networks of wireless microsensors for monitoring
physical environments have emerged as an important new
application area for wireless technology. Key attributes of
these new types of networked systems are the severely
constrained computational and energy resources, and an
ad hoc operational environment. This paper is a study of
the communication security aspects of these networks.
Resource limitations and specific architecture of sensor
networks call for customized security mechanisms. Our
approach is to classify the types of data existing in sensor
networks, and identify possible communication security
threats according to that classification. We propose a
communication security scheme where for each type of
data we define a corresponding security mechanism. By
employing this multitiered security architecture where
each mechanism has different resource requirements, we
allow for efficient resource management, which is
essential for wireless sensor networks.

Keywords—wireless, sensor, networks, communication

1. Introduction

Wireless sensor networks, applied to monitoring
physical environments, have recently emerged as an
important application resulting from the fusion of wireless
communications and embedded computing technologies
[1][3][13][18][19].

Sensor networks consist of hundred or thousands of
sensor nodes, low power devices equipped with one or
more sensors. Besides sensors, a sensor node typically
contains signal processing circuits, microcontrollers, and a
wireless transmitter/receiver. By feeding information
about the physical world into the existing information
infrastructure, these networks are expected to lead to a
future where computing is closely coupled with the
physical world and is even used to affect the physical
world via actuators. Potential applications include

monitoring remote or inhospitable locations, target
tracking in battlefields, disaster relief networks, early fire
detection in forests, and environmental monitoring.

While recent research has focused on energy efficiency
[14], network protocols [6], and distributed databases,
there is much less attention given to security. The only
work that we are aware of is [11]. However, in many
applications the security aspects are as important as
performance and low energy consumption. Besides the
battlefield applications, security is critical in premise
security and surveillance, and in sensors in critical systems
such as airports, hospitals, etc. Sensor networks have
distinctive features, the most important ones being
constrained energy and computational resources. To
accommodate those differences existing security
mechanisms must be adapted or new ones created.

The main contributions of our work are:
• An assessment of communication security threats

in sensor networks.
• Separate security mechanisms for data with

various sensitivity levels. Such separation allows
efficient resource management that is essential for
wireless sensor networks.

• A location-based scheme that protects the rest of a
network, even when parts of the network are
compromised.

Our approach to communication security in sensor
networks is based on a principle stated in [12], that says
that data items must be protected to a degree consistent
with their value. In the particular architecture [4], for
which we are developing our communication security
scheme, we differentiate between three types of data sent
through the network:
1. Mobile code
2. Locations of sensor nodes
3. Application specific data

Following this categorization, we specify the main
security threats and the appropriate security mechanisms:

On Communication Security in Wireless Ad-Hoc Sensor Networks
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• Fabricated and malicious mobile code injected into
a network can change the behavior of the network
in unpredictable ways.

• Acquiring locations of sensor nodes may help an
adversary to discover locations of sensor nodes
easier than using radio location techniques.

• Protection of application specific data depends on
the security requirements of a particular
application. In a target tracking application, which
was a test case for the given security scheme, we
treated the application specific data as the least
sensitive type of data.

Our main goal is to minimize security related energy
consumption. By offering a range of security levels we
ensure that the scarce resources of sensor nodes are used
accordingly to required protection levels. There are many
other important issues for security in sensor networks, e.g.
physical protection of the sensitive data in sensor nodes,
and the system-level security. However, those topics are
outside of the scope of this paper. The complexity of
building tamper-proof circuits that could protect sensitive
information held in a node is described in [2].

In Section 2, we describe the SensorWare network
architecture for which the communication security scheme
is developed. Section 3 categorizes possible threats to a
sensor network. In Section 4, we propose the
communication security mechanisms corresponding to the
defined types of data. Section 5 describes the
implementation environment. Section 6 discusses related
work, while Section 7 concludes the paper.

2. Sensor Network Architecture

In this section, we briefly describe the SensorWare
network architecture based on the research at UCLA and
Rockwell Science Center [16]. We point out the aspects of
the architecture that impact the design of the security
scheme. The most important elements of the architecture
are: localized algorithms, local broadcast model of
communication, and mobile code.

2.1. Localized Algorithms

The most distinctive feature of sensor networks is the
limited energy available to sensor nodes. Consequently,
careful budgeting of the available energy becomes a
fundamental design principle. Keeping in mind that
communication between nodes consumes a significant
amount of the energy resources, applications and system
software are expected to achieve a required level of
performance while minimizing the amount of traffic in the
network. In the SensorWare architecture, the applications
are designed based on localized algorithms, where nodes

triggered by an event exchange messages within an
immediate neighborhood. Only one node aggregates all
the sensor readings and sends the combined data to a
gateway node, which is one of the sensor nodes in a
network capable of serving as a proxy between the
network and the user.

2.2. Local broadcast

In sensor networks, local broadcast is a fundamental
communication primitive. Local broadcast is necessary to
build and maintain sensor networks architectures, and to
support the exchange of the data about detected events.
Any node in the network can be a sender or a receiver of a
broadcast message. These properties of sensor networks
have a significant impact on the security. In our security
scheme, we use shared symmetric keys for encryption.
Such a solution simplifies the key management and retains
the energy efficiency of local broadcast, but does not offer
strong authentication.

2.3. Code Mobility

The code mobility paradigm is essential in sensor
networks for two reasons:

1. Limited storage available to nodes does not allow
keeping all application on a node at all times.

2. Applications that a network should run may not be
known at the time of deployment of the network.

Since manual reconfiguration of sensor nodes after
deployment is not feasible, the support for mobile code is
additionally important.

3. Security Threats

Wireless networks, in general, are more vulnerable to
security attacks than wired networks, due to the broadcast
nature of the transmission medium. Furthermore, wireless
sensor networks have an additional vulnerability because
nodes are often placed in a hostile or dangerous
environment where they are not physically protected.

To demonstrate, on an example, some of the security
threats and our corresponding protection mechanisms, we
simulated and implemented a target tracking application.
The nodes that detect a target in an area exchange
messages containing a timestamp, the location of the
sending node and other application-specific information.
When one of the nodes acquires a certain number of
messages such that the location of the target can be
approximately determined, the node sends the location of
the target to the user.

Not only the application messages are exchanged
through the network, but also mobile code is sent from
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node to node. Because the security of mobile code greatly
affects the security of the network, we consider protection
of the messages containing mobile code as an important
part of our communication security scheme.

For the types of data specified in Section 1, we list the
possible threats to a network if communication security is
compromised:

1. Insertion of malicious code is the most dangerous
attack that can occur. Malicious code injected in the
network could spread to all nodes, potentially destroying
the whole network, or even worse, taking over the network
on behalf of an adversary. A seized sensor network can
either send false observations about the environment to a
legitimate user or send observations about the monitored
area to a malicious user.

2. Interception of the messages containing the physical
locations of sensor nodes allows an attacker to locate the
nodes and destroy them. The significance of hiding the
location information from an attacker lies in the fact that
the sensor nodes have small dimensions and their location
cannot be trivially traced. Thus, it is important to hide the
locations of the nodes. In the case of static nodes, the
location information does not age and must be protected
through the lifetime of the network.

3. Besides the locations of sensor nodes, an adversary
can observe the application specific content of messages
including message IDs, timestamps and other fields.
Confidentiality of those fields in our example application
is less important then confidentiality of location
information, because the application specific data does not
contain sensitive information, and the lifetime of such data
is significantly shorter.

4. An adversary can inject false messages that give
incorrect information about the environment to the user.
Such messages also consume the scarce energy resources
of the nodes. This type of attack is called sleep
deprivation torture in [17].

4. Communication Security Scheme

After we defined the three types of data in the
SensorWare network, and the possible threats to the
network, in this section we define the elements of the
security scheme. The three security levels described here
are based on private key cryptography utilizing group
keys. Applications and system software access the security
API as a part of the middleware defined by the
SensorWare architecture. Since all three types of data
contain more or less confidential information, the content
of all messages in the network is encrypted.

We assume that all sensor nodes in the network are
allowed to access the content of any message. As we said
before, we only deal with communication security.
Protection of data within a node is not discussed here.

The deployment of security mechanisms in a sensor
network creates additional overhead. Not only does
latency increases due to the execution of the security
related procedures, but also the consumed energy directly
decreases the lifetime of the network. To minimize the
security related costs we propose that the security
overhead, and consequently the energy consumption,
should correspond to sensitivity of the encrypted
information. Following the taxonomy of the types of data
in the network, we define three security levels:

• Security level I is reserved for mobile code, the
most sensitive information sent through the
network,

• Security level II is dedicated to the location
information conveyed in messages,

• The security level III mechanism is applied to the
application specific information.

The strength of the encryption for each of security
levels corresponds to the sensitivity of the encrypted
information. Therefore, the encryption applied at level I is
stronger than the encryption applied at level II, while the
encryption on level II is stronger than the one applied at
level III.

Different security levels are implemented either by
using various algorithms or by using the same algorithm
with adjustable parameters that change its strength and
corresponding computational overhead. Using one
algorithm with adjustable parameters has the advantage of
occupying less memory space.

We selected RC6 [15]. RC6 is suitable for modification
of its security strength because it has an adjustable
parameter (number of rounds) that directly affects its
strength. The overhead for the RC6 encryption algorithm
increases with the strength of the encryption measured by
the number of rounds [10]. Our implementation results
presented in Section 5 also demonstrate that property.

The multicast model of communication inherent for the
SensorWare architecture suggests deployment of group
keys. Otherwise, if each pair of nodes would require a key
or a pair of keys, communication between the nodes
would have to be unicast based. This would significantly
increase the number of messages. Since the addition of
security in a sensor network must not require the change
of the whole sensor network architecture, group keys are
utilized.

All nodes in the network share an initial set of master
keys. The number of the keys depends on the estimated
lifetime of the network. The longer the lifetime, the more
keys are needed in order to expose less material for a
“known ciphertext” attack. The alternative approach
where the keys would be established dynamically and
propagated through the network is not acceptable. It
would require such a protocol that guarantees that all
nodes received a key. Such a requirement is not feasible in
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a network where the nodes do not keep track of their
neighbors.

One of the keys from the list of master keys is active at
any moment. The algorithm for the selection of a
particular key is based on a pseudorandom generator
running at each node with the same seed. Periodically and
synchronously on each node, a new random number is
generated and used to provide and index to an entry in the
table of the available master keys. This entry contains the
active master key. The keys for three levels of security
corresponding to the three types of data are then derived
from the active master key.

4.1. Security Level I

The messages that contain mobile code are less frequent
than the messages that the application instances on
different nodes exchange. It allows us to use a strong
encryption in spite of the resulting overhead. For
information protected at this security level, nodes use the
current master key. The set of master keys, the
corresponding pseudorandom number generator, and a
seed are credentials that a potential user must have in
order to access the network. Once when the user obtains
those credentials, she can insert any code into the network.
If a malicious user breaks the encryption on this level
using a “brute force” attack, she can insert harmful code
into the network.

4.2. Security Level II

For data that contains locations of sensor nodes, we
provide a novel security mechanism that isolates parts of
the network, so that breach of security in one part of the
network does not affect the rest of the network.

According to our assumptions about the applications
expected to run in sensor networks, the locations of sensor
nodes are likely to be included in the majority of
messages. Thus, the overhead that corresponds to the
encryption of the location information significantly
influences the overall security overhead in the network.
This must be taken into account when the strength of the
encryption at this level is determined. Since the protection
level is lower for the location information than for mobile
code, the probability that the key for the level II can be
broken is higher. Having the key, an adversary could
potentially locate all nodes in the network. To constrain
the damage to only one part of the network, we propose
the following security mechanism. Sensor nodes use
location-based keys for level II encryption. The
location-based keys enable separation between the regions
where the location of nodes are compromised and the
areas where nodes continue to operate safely.

The area covered by a sensor network is divided into
cells. Nodes within one cell share a common
location-based key, which is a function of a fixed location
in the cell and the current master key. Between the cells,
there is a bordering region whose width is equal to the
transmission range. Nodes belonging to those regions
have the keys for all adjacent cells. This ensures that two
nodes within a transmission range from each other have a
common key. The dimensions of the cells must be big
enough so that the localized nature of the algorithms in the
network ensures that the traffic among the cells is
relatively low, compared to overall traffic. The areas can
be of an arbitrary shape with the only requirement that the
whole sensor terrain is covered. A division of the area in
uniformly sized cells is the most appropriate solution,
because it allows a fast and easy way for a node to
determine its cell membership. We divide the network into
hexagonal cells, since it ensures that the gateway nodes
have at most three keys.

A part of the bootstrapping mechanism for sensor nodes
is the process of determining their cell membership. In
that process, we use the notion of extended cell. An
extended cell is a hexagonal cell, which has the same
center as the original cell and the distance between its
sides and the sides of the original cell is equal to the
transmission range of the sensor nodes. The extended cell
contains the original cell and corresponding bordering
regions. Fig. 1 shows three neighboring cells and their
corresponding extended cells. Each node compares its
location against each extended cell and determines if it is
in an extended cell or not. If a node is within the extended
cell of Cx, it will have the key of Cx, KCx. The nodes
within the bordering regions (shaded areas) have multiple
keys as shown. For example, the nodes that are adjacent to
cells C1 and C2 have two keys: KC1 and KC2, respectively.

KC1, KC2

Figure 1. Cells, Extended cells and areas
with multiple keys

C1

C2

C3

KC2, KC3

KC1, KC3

KC1, KC2,
KC3

Cell

Extended cell
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4.3. Security Level III

We encrypt the application specific data using a weaker
encryption than the one used for the two aforementioned
types of data. The weaker encryption requires lower
computational overhead for application specific data.
Additionally, the high frequency of messages with
application specific data prevents using stronger and
resource consuming encryption. Therefore, we apply an
encryption algorithm that demands less computational
resources with a corresponding decrease in the strength of
security.

The key used for the encryption of the level III
information is derived from the current master key. The
MD5 hash function accepts the master key and generates a
key for level III. Since the master key is periodically
changed, the corresponding key at this level follows those
changes.

In the discussion above the major assumptions of the all
the proposed security schemes is that the sensor nodes are
perfectly time synchronized and have exact knowledge of
their location. It is not unrealistic [5] that the nodes can be
synchronized up to µs.

5. Implementation

As a part of a proof of concept implementation, we
ported the encryption routines of RC6 on the Rockwell
WINS sensor nodes. Each operates with an Intel
StrongARM 1100 processor running at 133 MHz, 128KB
SRAM, 1MB Flash Memory, a Conexant DCT RDSSS9M
radio, a Mark IV geophone and RS232 external interface.
The radios transmit at 100Kbps with the transmission
power of 1mW, 10mW, or 100mW. Using the ARM
System Developers Kit profiling tools, we measured the
clock cycles spend for encryption and decryption of a
single 128 bit block with a key of length 128, versus the
number of algorithmic rounds. In the AES candidate
report [10] the number of rounds, determines the security
strength of an algorithm. In this report for each algorithm
a minimum number of rounds for which the algorithm is
considered to be secure (Rmin) is presented.

Based on this quantity, the security margin of an
encryption algorithm is defined as the percentage of
deviation of the actual number of rounds from Rmin:

min

min

R

RR
M s

−
= .

Fig. 2 depicts the total clock cycles for encryption and
decryption of a single 128-bit block with a 128-bit key
versus the number of rounds.

As the figure shows, there is a linear relationship
between the clock cycles and the number of rounds. As

also shown from the equation above, increasing the
number of rounds, increases the security margin but the
overhead for each block is also increased.

The specification of the Rockwell WINS node can be
found in [9] and [20]. The maximum energy saving is
achieved when the radio transmission power is set to
1mW. To send a block of 128 bits, the radio consumes
1.28 µJ. The processor consumes 3.9 µJ to encrypt the
block using 32 rounds, which corresponds to security level
I. The energy consumed when the same block is encrypted
using 22 rounds, which corresponds to level III, is 2.7 µJ.
Therefore, if a message contains the data that is encrypted
on security level III the energy consumption decreases by
23% compared to a scheme where all data is encrypted on
level I. For the transmission power of 10mW, the
maximum savings are only 2%. It is important to mention
that the messages containing the location and the
application specific data are likely to occur much more
frequently than the messages containing mobile code, for
which the consumed energy is the same for the multitiered
scheme and the scheme with only one encryption level.

6. Related Work

The issue of security in wireless sensor networks has
not attracted much attention. The only work in that area
known to us is [11]. The sensor network architecture
discussed there significantly differs from the SensorWare.
In [11], the sensor network relies on the existing
infrastructure of the energy unconstrained base stations
that communicate with the resource constrained nodes.
The security protocol µTESLA, built for such an
environment, mainly supports the authenticated broadcast

Figure 2. Encryption and decryption clock
cycles versus the number of rounds for RC6
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from a base station to surrounding nodes. Even if a node
has to send a broadcast message, it must rely on support
from a base station. The protocol ensures authentication of
broadcast messages by distributing a key after the
messages encrypted with that key. Base stations are part of
a trusted computing base, and it is assumed that they
cannot be compromised. In our architecture all nodes can
be senders and receivers of broadcast messages. In order
to achieve a strong authentication offered by µTESLA in
our architecture, each node would have to have its own
key known to all other nodes in the network. In a network
with possibly thousands of nodes, such a solution does not
scale well.

In secure multicast for wired and mobile networks
[7][8] the main problem is key management, i.e. the re-
keying overhead when users join and leave the group. In
sensor networks the problem is different, since the sensor
nodes do not leave the group, and newly deployed nodes
are not forbidden to access the messages generated before
their deployment. The goal in sensor networks is to keep
external adversaries out of the group in an energy and
computationally efficient way. However, the approach of
dividing a group into subgroups and having gateways for
the inter-subgroup communication, used in secure
multicast, is similar to our approach of the division of the
sensor terrain in location based key areas.

7. Conclusion

In this paper, we propose a communication security
scheme for sensor networks. The straightforward approach
to the secure communication in sensor networks could be
the application of a single security mechanism for all data
in the network. However, if the mechanism is chosen
according to the most sensitive data in the network,
security related resource consumption might be
unacceptable. On the other hand, a less consuming
mechanism could allow for serious security threats.
Therefore, the solution lies in the identification of
appropriate security requirements for various types of data
and the application of suitable security mechanisms. Using
the target tracking application as an example, and the
SensorWare architecture as a target platform, we define
here some security challenges in sensor networks, identify
different types of data, and propose and implement
elements of a communication security scheme.

Secure communication, which is the topic of this paper,
is only one of the security issues in sensor networks. An
important security concern in the SensorWare architecture
is the deployment of mobile code. Besides sensor

networks, there are other systems, where flexibility is
required, but the security of a system must not be
jeopardized (Java Virtual Machines in Web browsers is
one of the well known examples).
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Abstract – Ad hoc wireless networks of deeply 
embedded devices such as micro-sensors and micro-
actuators have emerged as one of the key growth areas 
for  wireless networking and computing technologies. So 
far  these networks/systems have been designed with 
static and custom architectures for  specific tasks, thus 
providing inflexible operation and interaction 
capabilities. Var ious architectures are cur rently trying 
to make sensor  networks programmable and open to 
transient users. M ost of these schemes though, promote 
algor ithms that are too centralized and/or  too 
interactive (i.e. the user  is involved in the control loop 
most of the time), losing the efficiency these highly 
resource-limited systems need. Our  approach employs 
active networking concepts in the form of lightweight 
and mobile control scr ipts that allow the computation, 
communication, and sensing resources at the sensor  
nodes to be efficiently harnessed in an application-
specific fashion. The replication/migration of such 
scr ipts in several sensor  nodes allows the dynamic 
deployment of distr ibuted algor ithms into the network. 
Although these mobile control scr ipts have similar ities 
to mobile agents for  traditional data networks, a 
framework to suppor t them has different 
considerations than its traditional data network 
counterpar t. The paper  discusses these considerations 
and design choices, and descr ibes SensorWare, our  
implementation of such a framework.1 
 

I. INTRODUCTION 

In recent years we have witnessed an enormous 
growth in wireless networking with applications to 
traditional mobile computing and communication 
tasks. However, it is widely projected [16][32][39] 
that one of the highest growth applications of the 
wireless technology will be in the networking of 
deeply embedded devices such as sensors and 
actuators used for interacting with the physical world. 
In the not too distant future one will have an ultra-
low power system-on-a-chip that integrates radio 
communication, digital computing, and MEMS 
sensing and actuation components on a single die. 
Large networks of such wireless devices may be used 
for applications such as premise security and 

                                                           
1 This work was partially supported by DARPA SensIT program 
and ONR Minuteman project. 

surveillance, environmental habitat monitoring, 
condition-based maintenance, etc. 

Figure 1 shows an example of a distributed 
wireless sensor network where an ad hoc network of 
miniature, resource-limited, static, wireless, sensor 
nodes is being used to monitor a dynamic physical 
environment. The use of low power communication 
and the need for diversity in sensing necessitates a 
multi-hop, distributed architecture [32]. The 
computation capabilities at the nodes can be 
leveraged for event detection via data fusion and 
collaborative signal processing among nearby nodes, 
so that higher bandwidth raw sensor data does not 
need to be sent to the users. Typically a user queries 
the network (consider the term “query”  in the broad 
sense, not just database query), the query triggers 
some reaction from the network, and as the result of 
this reaction the user receives the information needed. 
The reaction to the query can vary from a simple 
return of a sensor value, to a complex unfolding of a 
distributed algorithm that promotes collaborative 
processing among some sensor nodes. 

Figure 1: Distr ibuted sensor  network 

These systems are also quite different from 
traditional networks. First, they have severe energy, 
computation, storage, and bandwidth constraints. 
Second, their overall usage scenario and the 
implications that this brings to the traffic and the 
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interaction with the users is quite different from 
traditional networks. These differences are discussed 
more extensively in section II.  

Essentially Sensor Networks (SNs) are 
application-specific distributed systems that require a 
different distributed algorithm as an efficient solution 
to each different application problem. Given the 
nature of SNs, there are two classes of problems in 
their design. First, the application-specific problem: 
How does one find the most efficient distributed 
algorithm for a particular problem? Second, the 
generic problem: How does one dynamically deploy 
different algorithms into the network, what is the 
programming model that will implement these 
algorithms, and what general support does one need 
from the framework? 

For the first class of problems (i.e., finding 
efficient algorithms for particular applications), there 
are many research efforts in a variety of application 
problems (e.g., target tracking, sensor reading 
aggregation). In this paper we will not expand into 
any particular application problem. We only note, 
that in general, localized distributed algorithms (i.e., 
distributed algorithms that act locally, using only 
local information) are particularly efficient in most 
SN problems as they achieve small and well-
distributed energy consumption, thus prolonging the 
network lifetime.  

The second class of problems (i.e., what is the 
right framework to express and dynamically deploy 
distributed algorithms for SN) is the focus in this 
paper. We describe our proposal of such a 
framework, called SensorWare. SensorWare provides 
a language model powerful enough to express the 
most efficient distributed algorithms while at the 
same time hiding unnecessary low-level details from 
the application programmer and providing a way to 
share the resources of a node among applications. 
The language model is developed after examining 
what are the properties of efficient algorithms for SN 
(e.g., localized distributed algorithms), and in 
conjunction with developing our own applications on 
real sensor networks [3]. 

Equally important is the role of SensorWare in the 
dynamic deployment of the distributed algorithms 
into the network. As sensor nodes are memory-
constrained, they cannot store every possible 
application in their local memory. Thus, a way of 
dynamically deploying a new application is needed.  
Usually this means that a distributed algorithm has to 
be incorporated in several sensor nodes, which in turn 

means that these sensor nodes have to be dynamically 
programmed. A user-friendly and energy-efficient 
way of programming the nodes keeps the user out-of-
the-loop most of the time by allowing sensor nodes to 
program their peers. By doing so, the user does not 
have to worry about the specifics of the distributed 
algorithm (because the information on how the 
algorithm unfolds lies within the algorithm), and the 
nodes save communication energy (because they 
interact with their immediate neighbors and not with 
the user node through multi-hop routes). The 
programming model of SensorWare is designed in 
such a way, so as to facilitate the user-friendly and 
energy-efficient dynamic deployment of an 
algorithm. The user "injects" the query/program into 
the network, and the query autonomously unfolds the 
distributed algorithm into the nodes that should be 
affected. The process resembles the operation of 
multiple collaborating mobile agents, 
replicating/migrating to the nodes where the 
distributed algorithm should be executed.  

Although the resemblance with mobile agents 
(MA) is strong, a platform to support this kind of 
behavior for SN does not have the same 
considerations as a platform for traditional-network 
mobile agents. We examine these differences in 
section III. It is also interesting to note that if one sets 
aside these differences and views SensorWare as 
another MA system which just operates in a different 
realm (i.e., the SN realm), some of MA’s general 
problems are considered solved. Kotz in [24] lists the 
lack of killer applications, security, performance and 
scalability as the most commonly pointed problems 
of agent technology. In SNs, most of the interesting 
and complex applications (e.g., target tracking) 
become the killer application for agent technology, 
exactly because they offer improved performance and 
scalability over other solutions. In order to achieve 
this, the MA paradigm should be disassociated from 
the notion of a single agent migrating from node to 
node while performing a given task, and associated 
with multiple simple light-weight agents that tightly 
collaborate to implement a distributed algorithm, 
while their behavior and position is influenced by 
physical events as well as the user needs.  

Section II discusses in depth the nature of SNs, the 
problems of traditional static SN designs, and the 
general idea of our approach. Section III presents 
SensorWare's architecture, and discusses design 
choices. Section IV presents related work. Finally, 
section V concludes the paper. 
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II. MOTIVATION AND BACKGROUND 

A.   Diferrences of SNs with traditional data networks 

The first difference of sensor networks compared 
to traditional data networks is that they have severe 
energy, computation, storage, and bandwidth 
constraints. For example, the wireless sensor node 
currently used in our implementation efforts [35] has 
a 133 MHz, 32-bit, Intel StrongARM 1100 CPU, 1 
MB of FLASH memory, 1 MB of RAM, a 100 kbps 
radio, and has to operate on two 9V batteries. This is 
considered to be towards the high end of sensor 
network devices. A popular, low-end node design 
from UC Berkeley [21] called “mote”  uses a 4MHz 
8-bit Atmel CPU with 8KB of FLASH memory, only 
512B of RAM, and a 10Kbps RFM radio. The major 
resource problem in such networks is energy, since 
these are static unattended networks, and the nodes 
cannot have renewable energy sources. Energy is so 
important that algorithms designed for sensor 
networks often sacrifice response latency, accuracy, 
and other user-desired qualities to save energy and 
prolong the operational lifetime of the network. Even 
with advances in battery life, energy will remain a 
scarce resource in the future and must be conserved 
and protected by the SN. 

The second difference of sensor networks 
compared to traditional data networks is their overall 
usage scenario and the implications that this brings to 
the traffic and the interaction with the users. 
Typically, in traditional networks, users are 
connected to a node  (or group of nodes) and require 
a service from another node. This two-entity 
communication model describes the overwhelming 
majority of traditional network traffic. The network 
acts as a medium bringing the two parties together. 
The interaction model is also straightforward; the 
user interacts directly with the user or the service at 
the other end. Certain actions from the user will 
produce certain data transfers to and from the other 
end. The most popular exceptions to these rules are 
free roaming mobile agents providing either data 
mining or broker services. However, this is a small 
portion of today's data networks. Sensor networks on 
the other hand, are less networks (i.e., in the sense 
that they loosely connect independent entities) and 
more distr ibuted systems. As stated earlier, the 
nodes tightly collaborate to produce information–rich 
results. The user will rarely be interested in the 
readings of one or two specific nodes. The user will 
be interested in some parameters of a dynamic 
physical process. To efficiently achieve this, the 

nodes have to form an application-specific distributed 
system to provide the user with the answer. This is a 
departure from the two-entity model: There is not a 
clear second group of nodes. There are only the users 
and the whole network. The nodes that are involved 
in the process of providing the user with information 
are constantly changing as the physical phenomenon 
is changing.  

The last remark brings us to the user-interaction 
topic. Apart from the user input, the physical 
phenomena now play a central role in the actions 
inside the network. The actions in each individual 
node are affected from external physical stimuli, 
information from other nodes, as well as direct input 
from the user. Actually, it is desirable to operate in a 
fashion where a node's actions are affected largely by 
physical stimuli detected by the node itself or nearby 
nodes. Frequent long trips to the user are undesirable 
because they are time and energy consuming. This 
decentralized (i.e. not all traffic flows to/from user), 
autonomous (i.e., user out-of-the-loop most of the 
time) way of operating, is called “proactive 
computing”  (as opposed to interactive) by David 
Tennenhouse [39]. We also adopt the term 
“proactive”  throughout the paper to denote an 
autonomous and non-interactive nature. In order for 
sensor networks to realize their full potential and 
efficiently use their limited resources, they have to be 
viewed as distributed proactive systems. 

B.   Problems of traditionally designed SNs 

The computation and communication tasks to be 
defined in such a distributed and proactive system are 
very application-specific so that the system design 
and implementation do not lead to easy layering and 
abstraction of lower level details. Basically, a 
different distributed algorithm is needed, to provide 
the optimal solution for each different task. This 
characteristic has led to systems designed with static 
and custom architectures for specific tasks (e.g., 
[21]). It is not possible for a transient external user, 
even if he were to be able to interface with the 
network, to dynamically utilize the system resources 
in any other fashion than what is hardwired into the 
custom application. These are systems that are 
essentially closed to external users and systems that 
wish to interface with them in a way other than the 
pre-programmed one. The inflexible modes of 
operation and interaction are a hindrance when one 
considers that these systems usually have long 
deployment cycles and often face transient users with 
varying needs. Ideally one would want to view the 
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sensor network as an entity that provides services to 
transient users with different dynamic needs. 

The notion of bringing programmability to the 
sensor network has been addressed before. One of the 
approaches currently under investigation is a 
distributed database model.  A good example of this 
approach is the work done at Cornell [2]. A similar 
scheme called DataSpace focusing on location 
addressing has also been developed in Rutgers [22]. 
Each node is equipped with a fixed database query 
resolver. As queries arrive to a node, the local 
resolver decides on the best, distributed plan to 
execute the query and distributes the query to the 
appropriate nodes. Although this approach takes into 
account the distributed nature of the system and 
works well in several scenarios, it does not take into 
account the proactive nature of the system. The user 
is the central place of control and most data flows 
to/from the user. This property can prove inefficient 
in applications such as target tracking, where it is 
better for nodes to form clusters around the target, 
collaboratively compute the target's location and just 
send the location information back to the user. 
Clearly a more flexible way of programming the 
sensor network is needed to enable this kind of 
behavior. 

C.   Our approach 

To address the problem of operation and 
interaction inflexibility, efficiently, taking into 
account both, the distributed and proactive nature of 
sensor networks, we have developed a framework for 
wireless sensor networks called SensorWare. 
SensorWare employs active networking concepts in 
the form of lightweight and mobile control scripts 
that allow the computation, communication, and 
sensing resources at the sensor nodes to be efficiently 
harnessed in an application-specific fashion. 

The SensorWare architecture is based on a 
scriptable lightweight run-time environment, 
optimized for sensor nodes that have limited energy 
and memory. This environment securely hosts one or 
more simple, compact, and platform-independent 
sensor-node control scripts. The sensing, 
communication, and signal-processing resources of a 
node are exposed to the control scripts that 
orchestrate the dataflow to assemble custom protocol 
and signal processing stacks. SensorWare has to also 
promote the creation of distributed proactive 
algorithms based on the scripting language described 
above. For this reason the scripts are made mobile 
using special language commands and directives. A 

script can replicate or migrate its code and data to 
other nodes, directly affecting their behavior. The 
replication or migration of a script will be called 
“population”  in the paper. 

A usage scenario can be like the following: A user 
sends a query to the sensor network. The query is a 
script, a state machine in its simplest form, which is 
injected to one or more sensor nodes. The script will 
describe among other things how it is going to 
populate itself to other nodes. The process of 
population can continue depending on events and the 
current state. For example as the events of interest are 
moving to a different area, the scripts can move along 
with them, possibly trying to predict their next move. 
The populated scripts will collaborate among 
themselves in order to extract the information needed 
by the user, and when this information is acquired it 
is sent back to the user. 

Basically, SensorWare's advantage is that it allows 
user interaction that goes beyond simple queries that 
check current or past status of a node, or install 
triggers for event notification. In SensorWare, a 
query can take the form of a script, which can 
populate to many nodes, allowing application-
specific handlers to run at these sensor nodes and 
process sensor events cooperatively with neighboring 
nodes without intervention from the user. In other 
words, SensorWare adopts and supports the 
distributed proactive model for sensor networks 
where each problem is handled by a different general 
distributed algorithm, giving the possibility for the 
most resource-efficient and user-optimized solution. 

III. ARCHITECTURE 

First, we show SensorWare's place inside the 
overall sensor node's architecture (Figure 2). The 
architecture of a sensor node can be viewed in layers. 
The lower layers are the raw hardware and the 
hardware abstraction layer (i.e., the device drivers). A 
real time operating system (RTOS) is on top of the 
lower layers. The RTOS provides all the standard 
functions and services of a multi-threaded 
environment that are needed by the layers above it. 
The SensorWare layer for instance, uses those 
functions and services offered by the RTOS to 
provide the run-time environment for the control 
scripts. The control scripts rely completely on the 
SensorWare layer while populating around the 
network. Static applications and services coexist with 
mobile scripts. They can use some of the 
functionality of SensorWare as well as standard 
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functions and services of the RTOS. These 
applications can be solutions to generic sensor node 
problems (e.g., location discovery), and can be 
distributed but not mobile. They will be part of the 
node's firmware. 

Figure 2: The general sensor  node architecture 

Two things comprise SensorWare: 1) the 
language, and 2) the supporting run-time 
environment. The next two subsections describe each 
of the parts in detail. A third subsection tries to 
provide a deeper insight into SensorWare by 
discussing some of the most important design 
choices.  

A.   The language 

As discussed earlier, the basic idea is to make the 
nodes programmable through mobile control scripts. 
The choice of a script language instead of a more 
general model will be discussed in sub-section C.1 
Here the basic parts that comprise the language will 
be described as well as the programming model that 
emerges from the parts. 

First, a scripting language needs proper 
functions/commands to be defined and implemented 
in order to use them as building blocks (i.e., these 
will be the basic commands of the scripts). Each of 
these commands will abstract a specific task of the 
sensor node, such as communication with other 
nodes, or acquisition of sensing data. These 
commands can also introduce needed functionality 
like moving a script to another node or filtering the 
sensing data through a filter implemented in native 
code. Second, a scripting language needs constructs 
in order to tie these building blocks together in 
control scripts. Some examples include: constructs 
for flow control, like loops and conditional 
statements, constructs for variable handling and 

constructs for expression evaluation. We call all these 
constructs the "glue core" of the language, as they 
combine several of the basic building blocks to make 
actual control scripts.  

Figure 3 illustrates the different parts of the 
SensorWare language. Several of the basic 
commands/functions are grouped in theme-related 
APIs. We use the term API in a generic fashion, to 
denote a collection of theme-related functions that 
provide a programming interface to a resource or a 
service. There are some commands that do not belong 
to any of the APIs and are included in the box named 
"other support cmds". Finally there is an important 
command which we chose to highlight, called 
"wai t ". The wai t  command defines to some extent 
the programming style for the scripts.   

Figure 3: The language par ts in SensorWare 

As a glue core we can use the core from one of the 
scripting languages that are freely available, so we 
are not burdened with the task of building and 
verifying a core. One such scripting language, that is 
well suited for SensorWare's purposes, is Tcl [29], 
offering great modularity and portability. Thus, the 
Tcl core is used as the glue core in the SensorWare 
language. All the basic commands, such as wai t , or 
the ones included in the APIs, are defined as new Tcl 
commands using the standard method that Tcl 
provides for that purpose.  

The set of APIs is basically a way of easily 
exporting services and shared resources to the scripts. 
The Networking API provides the basic functions so 
that the scripts can communicate with each other. The 
Sensing API provides the basic functions for 
accessing and sharing sensing data from the sensors. 
The Timer API defines and sets/resets real time 
timers. Finally, the Mobility API provides the basic 
functions to the scripts so they can transfer 
themselves around the network, access the data that 
they carry with them from node to node and also 
access some very restricted local memory in the 
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particular node that they are currently residing. More 
information on each API can be found in [4]. 

A.1 The general programing model 

As discussed earlier, according to the proactive 
distributed model the scripts will look mostly like 
state machines that are influenced by external events. 
Such events include network messages from peers, 
sensing data, and expiration of timers. The 
programming model that is adopted is equivalent to 
the following: An event is described, and it is tied 
with the definition of an event handler. The event 
handler, according to the current state, will do some 
(light) processing and possibly create some new 
events or/and alter the current state. 

The behavior described above is achieved through 
the wai t  command. Using this command, the 
programmer can define all the events that the script is 
waiting upon, at a given time. Examples of events 
that a script can wait upon are: i) reception of a 
message of a given format, ii) traversal of a threshold 
for a given sensing device reading, iii) filling of a 
buffer with sensing data of a given sampling rate, iv) 
expiration of several timers. When one of the events 
declared in the wai t  command occurs, the command 
terminates, returning the event that caused the 
termination. The code after the wai t  command 
processes the return value and invokes the code that 
implements the proper event handler. After the 
execution of the event handler, the script moves to a 
new wai t  command, or more usually it loops around 
and waits for events from the same wai t  command.  

Figure 4 shows an example of a SensorWare 
script. SensorWare commands are in boldface. There 
are comments in italics but basic Tcl knowledge is 
needed to follow the script. The example is sufficient 
to illustrate the basic programming style and the use 
of some of the most important commands. Without 
solving any real-world problem (as it randomly 
interacts with the physical world), the basic structure 
is evident: At first the script's state is accessed and 
updated. After setting new timers it enters the main 
wait loop. Events are received and processed 
according to their type. Scripts can also wait for a 
limited type of events (e.g. the second wait command 
of the example code). If certain conditions are met 
the script will replicate itself in proper neighboring 
nodes. The replicate command will initially notify the 
remote node about the code it wants to transfer. The 
remote node will reply on whether this code is in his 
cache and how many instances of the code are 

currently running in it, so the script can take further 
action.  For more complicated scripts that exhibit 
distributed coordination and solve real-world 
problems we refer the interested reader to [6]. 

Figure 4: An example of a SensorWare scr ipt 

B.   The run-time environment 

As important are the scripts in the SensorWare 
platform, equally important is the run-time 
environment that supports them. Figure 5 illustrates 
the basic tasks performed by the environment. 

Figure 5: Tasks in the SensorWare run-time 
environment 

# These are data that the script carries with it. The particular ones inform 
#the current instance about its parent node (the one which sent the script) 
set send_node [Agent_memory_read 0]; 
set send_node_neighbors [Agent_memory_read 1]; 
# update these data for use in the next replication  
Agent_memory_write 0 [getNodeID]; 
Agent_memory_write 1 [getNodeNeighbors]; 
#based on the above info find nodes that probably do not have the script 
#and store their list in the variable $remaining nodes (commands omitted) 
# set a timer called RT with the initial value 200ms 
setTimer RT 200 
# the big loop starts 
while {1} { 
        set ans [wait -msg * -data * -until RT] 
#wait cmd returned, find out type and body of event. 
        set type [lindex $ans 0];   set body [lrange $ans 1 end] 
        switch $type { 
 w {   # a timer expired, do something.  
         setTimer TT  100 
 } 
 s {   # data was sensed.  
#wait for sensing data threshold to be passed, within 5 ms 
        set ans [wait -data -threshold 10 -until 5] 

       set type [lindex $ans 0]; 
        if { $type = "s" } { set ready 1 } 
 } 
 n {   # a network message was received.  
         If { $ready}  (Agent_replicate $remaining_nodes; exit; } 
 } 
}  
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The Script Manager is the task that accepts all 
requests for the spawning of new scripts. It forwards 
the request to the Admission Control task and upon 
receiving a positive reply, it initiates a new 
thread/task running a script interpreter for the new 
script. The Script Manager also keeps any script-
related state such as script-data for as long as the 
script is active. Possible attacks such as snooping or 
spoofing are banned by the strict security model (see 
section C.3 ). The script manager also keeps a script-
code cache in order to reduce code transmissions over 
the wireless channel. The Admission Control and 
Policing of Resource Usage task, as the name reveals, 
takes all the script admission decisions, makes sure 
that the scripts stay under their resource contract, and 
most importantly checks the overall energy 
consumption. If the overall consumption exhibits 
alarming characteristics (e.g., the current rate cannot 
support all scripts to completion) the task selectively 
terminates some scripts according to certain 
SensorWare policies. Resource management is 
discussed further in sub-section C.4 . 

The run-time environment also includes three 
"Resource Abstraction and Resource Metering" tasks 
(sometimes referred to as "Resources Handling" tasks 
for brevity). Each task supports the commands of the 
corresponding APIs and manages a specific resource. 
For instance, the “Networking”  task manages the 
radio: i) it implements an energy efficient routing 
protocol, ii) it accepts requests from the scripts about 
the format of network messages that they expect iii) it 
accepts all network messages and dispenses them to 
the appropriate scripts according to their needs, and 
finally iv) measures the radio utilization for each 
script, a quantity that is needed by the “Admission 
Control & Policing of Resource Usage”  task. As 
another example, the “Sensor Abstraction”  task 
manages the sensing device. It accepts all requests for 
sensor data from all the scripts and decides on the 
optimal way to control the sensing device. It also 
measures the sensing device utilization for each 
script. Finally, the "CPU and Timers" task accepts the 
various requests for timers by all the scripts and 
manages to service them using the small number 
(usually one or two) of real-time timers the embedded 
system provides. In essence the task provides many 
virtual timers relying on few real timers provided by 
the system. The task also meters the CPU utilization 
by each script, and can put the CPU in idle mode, if 
the embedded system allows this functionality.  

Figure 6 depicts an abstracted view of 
SensorWare's run-time environment. 

Figure 6: Abstracted view of SensorWare's run-time 
environment 

Most of the threads running are coupled with a 
generic queue. Each thread "pends" on its 
corresponding queue, until it receives a message in 
the queue. When a message arrives it is promptly 
processed. Then the next message will be fetched, or 
if the queue is empty, the thread "pends" again on the 
queue. A queue associated with a script thread is 
receiving events (i.e., reception of network messages, 
sensing data, or expiration of timers). A queue 
associated with one of the three resource handling 
tasks, receives events of one type (from the specific 
device driver that is connected to), as well as 
messages that declare interest in this event type. For 
instance, the Sensing resource-handling task is 
receiving sensing data from the device driver and 
interests on sensing data from the scripts. The Script 
Manager queue receives messages from the network 
that wish to spawn a new script. There are also 
system messages that are exchanged between the 
system threads (like the ones that provide the 
Admission Control thread with resource metering 
information, or the ones that control the device 
drivers). 

Portability is a major issue in SensorWare as we 
envision our system to be used by many diverse 
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platforms. The structure of the run-time environment 
remains the same across platforms, as shown in 
Figure 6. The only parts that need to be changed are 
some RTOS definitions (e.g., thread creation, queue 
definition and handling) for different RTOS, and 
interactions with the device drivers for different 
embedded systems (systems with different hardware 
and/or different design of device drivers). 

C.   Design choices in SensorWare 

In this subsection we are going to present the 
issues that are important for SensorWare highlighting 
the differences with traditional Mobile Agents when 
applicable. The discussion will concentrate on: 1) 
The scripting abstraction 2) Coordination and 
mobility models, 3) Code safety and security, and 4) 
Resource management.  

C.1 Scripting abstraction 

The SensorWare scripting model has its 
philosophical roots in various successful systems 
where an embedded run-time scripting environment 
provides users with scriptable access to the resources 
of a complex system, such as JavaScript in web 
browsers and servers, and Tcl in simulators (e.g. ns), 
CAD tools (e.g. Synopsys tool chain), and RTOSs 
(e.g. VxWorks). 

The expressiveness of our programming model 
does not impair even to a minimum the possible 
distributed algorithms developed. On the contrary, 
programmers of distributed proactive algorithms for 
SNs find it natural to program in the SensorWare 
language. This is because the programmers do not 
need lower-level access to the nodes but rather a 
simple glue core and a set of well-defined and 
functionality-rich APIs. The choice of a scripting 
language provides SensorWare with many 
advantages.  First, in scripting languages it is much 
easier to provide a sandbox execution environment 
[40], thus helping code safety, a critical need when 
mobile code is considered. Second, the interpreted 
version of the scripts makes them easily portable, an 
important advantage when multiple sensor node 
platforms are considered. Third, the particular Tcl 
core is so lightweight and easily customizable that it 
is ideal for the restricted environment of a sensor 
node.  

C.2 Coordination and mobility models 

It is important to begin the discussion in this area 
by stating the major difference between mobile 
agents for traditional data networks and SensorWare's 

mobile scripts. Stated succinctly, their intended uses 
and deployment scenarios are different. A traditional 
mobile agent is meant for an Internet-application 
environment possibly with mobile ends and 
intermittent connections. It is viewed as a free-
roaming entity, mostly autonomous and self-
contained (i.e. the application usually consists of one 
agent; there is no need for distributed computing). 
The agent executes in a machine until certain 
conditions are met, and then it migrates to the next 
suitable machine to execute the same or different 
code portions. SensorWare’s scripts on the other hand 
are rarely an application on their own. An application 
will consist of many simple scripts, executing in 
different nodes, which are tightly collaborating 
among themselves. This set of scripts will probably 
expand/shrink and move as physical phenomena are 
evolving. The mobility of the scripts is used to 
properly diffuse the distributed algorithm into the 
network.  

This major difference in intended uses and 
deployment scenarios is the cause for all other 
operational and architectural differences. One such 
operational difference is the coordination model. 
Sometimes it is desirable for traditional agents to 
coordinate among themselves. Because this 
coordination is usually done in a loose manner and 
the agents usually roam in networks with intermittent 
connections, the direct communication model of a 
client-server scheme often makes programming hard. 
Several enhanced schemes were proposed in the 
literature to alleviate the agents from knowing the 
exact address of the other agent, as well as the exact 
time that they wish to communicate. For example, the 
meeting-oriented model [42], the blackboard model 
[9][13], and the Linda-like model [1][10], all achieve 
increasingly higher spatial and temporal uncoupling 
of the agents. For SensorWare scripts on the other 
hand, the direct communication model is perfectly 
suited. As stated earlier the scripts are envisioned to 
perform very tight collaboration among them. In 
addition, this kind of collaboration will happen 
among locally clustered and static nodes, making the 
peer-to-peer direct communication easier. Spatial and 
temporal uncoupling mechanisms will just introduce 
an unwanted overhead. The main command used for 
message passing in SensorWare is send <dest> 
<data>, with dest::=<nodeid:name of code:user:instance>, 
and data::=<string> (e.g. send  *:aggregation.max.temp:*  
“1 3.5” sends the string “1 3.5”  to all scripts named 
“aggregation.max.temp”  residing in any of the 
neighboring nodes, belonging to any user).  
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Another architectural difference of SensorWare 
with respect to data network frameworks is the 
mobility model. In most traditional mobile agent 
environments there is a command to capture and 
restore the complete state of a migrating agent. This 
way, the execution of an agent could be stopped at an 
arbitrary point in one node, and resume execution in 
another node from the exact same point, as nothing 
happened. This form of mobility is called “strong 
mobility”  as opposed to “weak mobility”  that 
SensorWare supports. Weak mobility basically 
supports the transportation of the code and data to a 
remote node, but the execution starts from well-
known fixed entry points in the code. Weak mobility 
is also supported by some commercial agent systems. 
The prime reason for this is that strong mobility 
requires customized interpreters, thus making 
penetration in the market more difficult. 
SensorWare’s reasons on the other hand are different. 
Firstly, SensorWare must be lightweight. Secondly 
and more importantly, there is no evident need for 
strong mobility in our scenario. There in no need for 
agents that hop from node to node, each time doing a 
portion of the work. SensorWare needs only an 
efficient way to diffuse the distributed algorithm into 
the network.  

C.3 Code safety and security  

We distinguish between code safety and security 
in the following sense: code safety relates to the 
execution of a script in the SensorWare run-time 
environment inside a node, whereas security relates 
to the network as a whole. For code safety, one would 
want guaranties that a buggy or malicious script will 
not have any effect on other scripts or on the run-time 
system. For security, one would want guaranties that 
an intruder could not gain access to resources or 
information of the network, and could not affect the 
use of the network by legitimate users. SensorWare 
does not consider general security issues. Current 
SNs though, have fewer security concerns than data 
networks, because they are assumed to have one user 
or a set of collaborating users. The major problems 
are authenticating the current set of users and deny 
any service to anyone else, as well as encrypt the 
data. Wen et al. [41] describe a security scheme for 
sensor networks that could easily work alongside 
with SensorWare. If the problem of legitimate access 
to the network is solved, code safety is the only issue 
in achieving overall security. 

Code safety is an integral part of SensorWare as it 
is closely related to the language and run-time 

environment design choices. SensorWare employs a 
simple and strict code safety model.  The model 
adopts the sandbox environment approach, which is 
one of the four practical techniques for mobile code 
safety [36]. Usually this approach is coupled with 
code-signing (like the Java model), in order to 
associate different code portions with different 
resource access levels. This is not needed in 
SensorWare though, as all scripts have the exact same 
privileges.  The sandbox environment is not a single 
consideration in our framework but rather emerges 
from the design choices made in the language, in the 
way scripts are executed in the run-time environment, 
and in the resource management.  

One needs to provide protection under the 
following possible attacks [12]: i) information 
leakage, ii) information tampering, iii) resource 
stealing, iv) antagonism (no gain for the attacking 
script, but harmful for the attacked scripts). At the 
language level, the choice of an interpreted scripting 
language provides many advantages. No low-level 
control is available in the scripts and the interpreter 
provides an ideal framework to sandbox the 
executing programs [40]. Furthermore, our scripting 
framework is stripped down of any commands that 
could directly access global state or global resources. 
The only shared resources are accessed under 
restrictive APIs. Basically the APIs allow the scripts 
to declare 'interest' in the resources and the 
appropriate resource-handling task is capable of 
safely processing multiple requests from multiple 
scripts. In addition, when multiple scripts are running 
on a node they execute in different threads under 
different interpreters having their own thread stack. 
The interpreters are altered so that they operate only 
within the limits of the stack. Thus it is virtually 
impossible for one script to affect accidentally or 
deliberately the state of another script or the system's 
state. Possible security breaches, like resource 
stealing, or denial-of-service attacks (antagonism), 
are eliminated by the resource management in 
SensorWare, which strictly police all scripts at run-
time. The resource management issues are discussed 
in the following sub-section. 

C.4 Resource management 

Even though there are no competing users, there 
are competing applications; thus one cannot blindly 
replicate/migrate any script at any node. The 
resources are limited (especially energy) and must be 
shared among applications. Even in the case where a 
single application exists in the whole network, it 
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might choose to alter its behavior to conserve energy. 
In SensorWare, resources are metered at run-time, for 
all scripts, by the corresponding resource handling 
tasks, and a central task makes admission decisions 
and polices the scripts according to their pre-
negotiated values. As mentioned previously, the 
premium resource in sensor networks is energy. The 
energy consumed by a script running on a node 
depends on many attributes. Generally, the script's 
usage profile of the node's modules (e.g., radio 
module, CPU, sensing module) in conjunction with 
the profiles of the other scripts currently sharing the 
node's environment will determine the overall energy 
consumption, and the amount that the specific script 
is contributing to this quantity.  

Since some resources are sharable by the scripts 
(e.g. radio in receive mode, sensing device), while 
others are not sharable (e.g. the radio in transmit 
mode, the CPU), the task of initially estimating, and 
later measuring the impact of an admitted script on 
the energy consumption, is especially difficult. As an 
example, imagine that a script, already running in a 
node, needs to have the radio in listening mode, 
100% of its lifetime. An incoming script, with the 
same listening requirements and zero transmitting 
requirements, should have little effect on the overall 
consumed energy and could be easily admitted. If the 
first script was absent though, the admission decision 
could be different.  

In SensorWare the profile of the script consists of 
the values: 1) script's lifetime in a particular node, 2) 
percentage of lifetime the radio is in “ listen”  mode, 3) 
transmitted bytes, 4) percentage of lifetime that the 
sensing module is active, and 5) time that the CPU is 
active. These values along with a quantity named 
“ importance indicator”  that introduces a usefulness 
metric for the scripts, will determine the admission 
and further survival of the script in a node. The 
energy-based admission control and policing rules are 
an integral part of SensorWare and involve intricate 
issues. Some of these issues include the real-time 
measurement of the script’s profile values, as well as 
the added energy load of a script with respect to a 
specific set of scripts running in the node. Other 
issues involve alternate definitions of usefulness 
metrics, and analysis of heuristic admission and 
policing rules to maximize the useful work done, 
under energy constraints. Our research explores 
certain heuristic rules and reports 33%-86% increase 
in useful work done (i.e., sum of scripts completed 
multiplied by their importance indicator), under finite 
energy supplies. Resource management will not be 

further analyzed in this paper; more can be found in 
[4]. 

IV. RELATED WORK 

SensorWare falls under the broad family of active 
networking frameworks. As we mentioned its closest 
relatives are Mobile Agent frameworks, which we 
compared against SensorWare throughout the text. 
One might wonder how does SensorWare compares 
with other active networking frameworks, especially 
some that exhibit obvious similarities. One such 
framework is the PLAN language [20]. PLAN, as 
SensorWare, uses a scripting abstraction to describe 
simple packet programs based on more advanced 
node-resident services, adopts a simple but strict 
language model to achieve safety (and resource 
management, unlike SensorWare), and supports the 
weak mobility model. However, the goals of PLAN 
and SensorWare are different which lead to subtle but 
important distinctions. First and foremost PLAN and 
SensorWare have completely different programming 
models. SensorWare is event-driven, with a script 
interacting with the physical world and other scripts. 
PLAN is packet oriented, focused on executing 
simple programs as packets pass through the active 
nodes. As a “side-effect”  SensorWare's APIs offer 
different services than PLAN's build-in functions. 
Less obvious are the differences in resource 
management. PLAN, focusing on network traffic, sets 
bounds on resources used (CPU, memory, 
bandwidth) through the design of the language. For 
instance, a program has predictable termination time; 
linearly proportional to the packet size that is 
carrying it. This model is just not acceptable in our 
case as we depend on unpredictable external physical 
events. Furthermore, the prime resource is energy, 
complicating things as discussed in section III.C.4 . 

It would also be helpful to compare SensorWare 
with other programming platforms for SN, such as 
TinyOS from Berkeley [21]. TinyOS can be viewed 
as a node-level operating system, much like any other 
embedded OS, having different design focus though 
from traditional embedded OS. SensorWare can be 
viewed as a system-level OS, which is based on the 
existence of a node-level OS. Essentially, the two 
frameworks belong into different categories, with 
TinyOS trying to provide efficiency at the node level, 
and SensorWare working at the system level. 
Furthermore their whole philosophies are different. 
SensorWare wants to make SN open at runtime. 
TinyOS focuses on efficient programmability in the 
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pre-deployment phase. Finally, one might be 
interested to know if TinyOS can be used as a 
substrate for SensorWare. This cannot be done, as 
TinyOS architecture is so simple (by design) that 
does not support common features of embedded OS 
such as multi-threading, needed by SensorWare. 

In the rest of the section we only consider work 
that tries to make SN programmable using active 
network concepts. Therefore, general mobile agent 
platforms are not discussed any further, nor any 
distributed database systems for SN are presented.  

Particularly instructive is to study the relationship 
between SensorWare’s mobile scripting approach and 
the mobile code approach in Penn State’s Reactive 
Sensor Network [34] (RSN) project under DARPA’s 
SenseIT program [37]. RSN’s focus is on providing 
an architecture whereby sensor nodes can: (i) 
download executables and DLLs, identified by URLs, 
from repositories or their cache, (ii) execute the 
program at the local node using input data which 
itself may be remotely located and identified by a 
URL, and (iii) write the data to a possibly remote 
URL. The RSN model is in essence Java’s applet 
model generalized to arbitrary executables and data, 
and combined with a lookup service. The focus of 
RSN is quite different from SensorWare. Differences 
include: (i) RSN provides a general lookup and 
download service, (ii) RSN does not seek to provide a 
scripting environment with an associated sensor node 
resource model for use by scripts, and (iii) RSN’s 
notion of mobility is download oriented, as opposed 
to SensorWare’s approach of a script which can 
autonomously spawn scripts to remote nodes. RSN 
views sensor nodes as network switches with 
dynamically adaptable protocols, trying to directly 
map the motivation and methods of classical active 
networks into sensor networks. Unfortunately such an 
approach does not address the basic problems of 
sensor networks. Although one might be able to 
construct some distributed applications using the 
above scheme, by no means the creation and 
diffusion of distributed proactive applications into the 
network is supported by its architecture. 

Finally, extremely relevant is the work that is 
being conducted in University of Delaware by 
Jaikaeo et al. [23] called SQTL (Sensor Querying and 
Tasking Language). Having the same goals as our 
research, but starting from a different point (database-
like queries), the researchers end up with the same 
basic solution as SensorWare, namely a tasking 
language for sensor networks. To lively demonstrate 

the relevance to our work we are quoting an excerpt 
from [23].” We model a sensor network as a set of 
collaborating nodes that carry out querying and 
tasking programmed in SQTL. A frontend node 
injects a message, that encapsulates an SQTL 
program, into a sensor node and starts a diffusion 
computation. A sensor node may diffuse the 
encapsulated SQTL program to other nodes as 
dictated by its logic and collaboratively perform the 
specified querying or tasking activity.”   

SQTL fits in a more general architecture for 
sensor networks called SINA (Sensor Information 
Networking Architecture) [38]. SINA uses both SQL-
like queries as well as SQTL programs. Some of its 
main features include: 1) hierarchical clustering, 2) 
attribute-based naming, 3) a spreadsheet paradigm for 
organizing sensor data in the nodes. SQL-like queries 
use these three features to execute simple querying 
and monitoring tasks. When a more advanced 
operation is needed though, SQTL plays the essential 
role by programming (or “ tasking”  as the researchers 
from Delaware call it) the sensor nodes and allowing 
proactive population of the program. In SINA, SQTL 
is used as an enhancement of simple SQL-like 
queries. The framework is there mainly to support the 
queries not the mobile scripts. As a consequence, 
SQTL scripts do not have all the provisions that 
SensorWare scripts have. The most important of them 
are: 1) Rich sensor-node-related APIs (e.g. for 
networking, sensing). 2) Diverse rules for mobility. A 
SQTL script can only specify the nodes to be 
populated. SensorWare first checks if the script is 
already in the remote node and offers a multitude of 
possibilities depending on how many instances of the 
script are already running in the remote node. 3) 
Code modularity in order to share functionality and 
avoid redundant code transfers 4) Support for multi-
user scripts. 5) Resource management in the presence 
of multiple scripts running in the node. For more 
information on SensorWare's provisions for efficient 
applications in SN one can refer to [5]. 

V. CONCLUSIONS 

In this paper we argue that the development of a 
framework based on a lightweight mobile scripting 
mechanism will help bring many desired properties in 
sensor networks. It will make the sensor networks 
programmable and open to external users and 
systems, keeping at the same time the efficiency that 
distributed proactive algorithms have. We present the 
framework's architecture and discuss design choices. 
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SensorWare has been used in building distributed 
algorithms for SN problems with very promising 
results [3].  
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��	 	��������� �� ��������	 �������� ������������ � ����
����� ����� ����� �� ��� ������� �� �������� ����������� ����
����� ������ �� ��� ������� �� ������������ ��  ��������
��� ����
���� ������� ��	 �����������!"#$� %� ���� ������ �� ���	�
��� ���� ���������� ���� �� �	���� ��	� ������������� ���
	���������	 ����������� �����	 	�������	 ���� ������� �	�
��� 	������	 �������� ������������ �� 	����
�� ����� ������
��� ��������� ���� �� �������� �� � ��� ������������ ����
������  ������! ��� �������� 	������� ���� ��� ��������� ��	
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��� ���
� ���� ������� �� � ������� 	���������	 �������
��� ��� �� ��� �������� �� ��� ����� ���	
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��

	
��� �� ��������� ���� ��� �������� ��� ��������� �� ��	��
���� ��� �������� ���� ���� ���� ����� ��������� �������
'�� ���������� ������� ���� ���� � (����������� �������� �

�������� ��������� ���� ������� �� ��� ������ �������� ���
�� �������	 ������� ���� ������ ����������� ���� )( �� *
+,'-� ��� ��	�. � �� ������	 �� ��� ����������	 ������
������ ���� ����� ������� �� �� ����� ���� ������� �� ���
������� ��	�� ��	 ������� ������������ ��� �������� ��
��� �������	 �������

1. INTRODUCTION
��� �������� �� �
�� ������ ��	 ������� ����		�	 ����
������� ��	 �������� ���������� ���� ������������� ����	 ��
���������������� ������� )��. ���������� ��� ��	 ��
��� ��������� �� �������� ������ �������� �� � ��
�� ����� ��
��������	 ����		�	 �������� ��� ����������� ��	 	�
����
������������ ��� ����� ������� ��� ��������� ����� �/�����	�
%� ��	��� ��������� ������ �������� ��� �����	� ����� ���	
��� ���	����������	 ����������� �� ������/ �0������� ��

�1����� ����	 �� �
������ 	������ �� 2���� #3

���������� %� ���	��� ��
���������� ����� �������� ��� ����
���� ��� ������� ��������� ������ ����������� ��	������	
�������� ������ 2���� ��	 	������� ������ ��� �������� ����
�� ����� ��������	 ������� �� �� !����	����� ������� �����
���
�� �� �����
� � ������ ������� ����! "#$� 4������ �� �����
��0���������� ������ �������� ��� �/�����	 �� ��� �� �����
	���������	 ������� ����� ����������� �� ����		�	 ����	�
��� �������� ��� ������ �� ���� ������� ������� ��� �����
������ �� ��� �� ����	����� ��	 	��������� ����������� ��
������ �����������������	 	�
���� ���� ������	 ������ ��	
����������� ������������� 56 4�������7� 1��� ���� ��� �/�
����� ��� � *8� 9���� ����� ���������� ���� &���� ����
3#: ����� �� +,&�8 ������ ��	 9 ��������� �� 1&� �
��� ����� ��	�� ��	 ���� �������� ;��� ���� ������� �� ��
����� ��� ���� ���� ���� ��	�� ��� ��0����	 �� ������� ����
��������
� ����������� �� � �����	 �
���� %� ���� ����� ��
�/����� ��� ���� �������� ���� �� �	���� ��	� �������������
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���� ������������ ��� ����	 �� ��� �	���� 	��������� ��
�������� ������� �� 	�������� �� ������ ��/�� ��
���������
�� ������� 	�<����� �
���� ��	 ������ ����� 2�	���� ���� ��
� ������ ��������� %� ���� �����/�� �� �� �� ������ ������
����� ���� ���� ��	� �� ����� �� ��� ��������� ���� ������
�	�� �� ��	� �������� �� ���	�	 ��� ��������� ��� ����������
������� �� �����	 �
���� ��	 �� ������� ����� ������� ��
��
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���� ��	� ��������� �
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���������� �������� 	�
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������� ��������� ;� ����� �� ��� �����	 �� � �������
�
������� �� ��� �� ���	 �� � ��������� �� ������ ������� ��
���� 	�<����� ���2���������� ��� ����� 	���������	 ���� ��
��� �������
� �� ��� ���	� �� ��Æ����� �� ������� ���������
���� �� � ������� ������ ���� ���� � ������ ��	��� ������
������� �������� 	��� ��� ��0���� ��� ������� ��������� ���
����������	 ����������� ��	�� �� ��� ����� ���	� ��� ��
���	 �� ���� �� � ������� ������ ���� �� ������ ����������	
�� ������� ����������	� %� ���� ����� ��� ������������� ���
0��������� ��� �� ������ �	?����	 �� ���� �� ������� ����
������� �� ��� ����� ������������� ��	 ����	������� ����
������ �� ��� �������

1.1 What is presented in this paper
'�� ������������ �� � �����	 ���� ����� �	���� ������
��	�� ��� ����	����� ����� �������
�� �� ���
� � ������
���������� ������������ ������� �� �������� �������������
���� ���
��� ��� ���� �� ����� ��0�������� ���� ��������
%� ���� ����� �� ������� ��� ����������� ��	���@ ��������
���	 ��	 	���������	� ��� ���� ���� �� ��� 	��������� �� ��
	���������� ��� ���������� �� ��� 	���������	 �������� ��
������� ��� ������ ������� �������� %� ��� ����� �� ���

��������� ��� ������� �������� �������� ��� ���� ��	� �� ���
��� �������	 ���� � ������ 
������ ����� ���� �����	��� ���
��� �
������� �������� ����������� ��	 ��� 	������� ��������
����� ������� ����������� ��	��� ��� �������	 ������
�		������ ���� ��������� �� ����� � 
��� ����� ������ )( ��
����. �� ������� ���	����� )��� ������ ��	��. ��	 �� ����
������ �������� ��	 	������� ����������� ����������� �
��
�������� ����� &������� ���� �� ��� ��	�� ��� ��Æ�����
������ ��	 ����������� ��������� �� ���
� ���� �������
��	�
�	������ ��� ��	�� ��������
��� ���
� ���� ������� �� ����
������� ����� ����������� ��	 �������������� & 	�������
������� �� ��� �������� �� ��� �����	������ �� � �����������
������� ��� ���������� ��� ��������� �� ��	�� ���� ��� �����
������ ������	 �������� ���� ���� ���� ��� ������ ��	���
%� ��� 2��� ������ ��	�� �������� �������
�� �� ������� ����
2���������� ��� �����	�	
�� ���	���� ����� ����� ��	�� ��
�������� ����� �������� �
�� �������� ���� ����� ���
������
����� ������������� A����� ��� �����	 ������ ��� ��	��
��� ������ ����������� ������������� �� ������ � ���	� ����
���� �������� �� ����� ���������� ����� ��������� ��� �����
�� ��2��	 �� ��� ����	 ����� )�������� ��2������ �����. ���
��� � B����� 2���� "#9$� ��� ����	 ����� ��� ��� ��������
��	��� �� ������������ ����������	 ��	 	���������	� ���
	���������	 ����������� ��	�� �������� ������� ��
���� ��
��� ��������� 4� ���������� ��� B����� +����� ��������
���� �� ��� �����/� � ����������� �������� ��	�� �� � ������
��� ������� ��������� � ���	���� ���� ������� �� ��� ������
�������� ������������ ���� ���	���� ������� ���� �������
��	� ������ �� ��� ����������� ������� �� �������� ���
�������� ������� �������� �������� �� ���������� ��������
���� �������� '�� ������� 	���������� ���� ����� �����������
����� ����� �� �������� ��� � ����� �� ����� ���������������
����������	 ��	�� �� ��������
��� ���
� ��� ���������� �����
�������� ������� �� ��	� ������������� � ������� ���� ����
�� ��� ��	�� ��� ���
� ��	�
�	������

���� ����� ��� ��� ���� ����� #. �� 	������� ��� ������
������ ��	�� �� ��� ����� ��������������� �������
� )����
�������	 ��	 	���������	. ��	 :. �� ���������� ���� �� ���
�������� ���������� �� ��� ����� ��������������� �������
�
�� �
�������� ��� 	�<����� ����	� �� ������������ ������

������� ��������� ������������� ��	 �������� ��� �������
��������	 ���� ��� 	����������	 �� � ��� �� ����������� ��
���: ��	 &�,&4 ���� ������� ��� 	�<����� �����������
������ ��� ����������	 ��	 ��� 	���������	� +����������� ��
	�
�����	 ��� 	��������� �����	 ��� �/���������� ��������
������� 	�
��� ��� ������������� 	�������	 �� ������� =�*� ;�
��� ���� 	�
��� �� 	���������� ��� 
�������� �� ��� ��������
�� ������������ ���� ��������� �� � �������� �������	 �����
���� ������� 	�
��� �� ��
� 	�
�����	 ��� ���	������ �/����
������ ������	 �� ��	� �������������

2. RELATED WORK
C�	� ������������ ��� ���� ��� ����� �� ����
� �������� ��	
���� ������� ��
� ��	� ����� ���������� �� ��� ���� ���
������ ��������7� 1&A&1 ������ "#D$ ��	 56,&7� E-��
���� ������������ ������ "#=$ ���
�	� 1+ ����	 �������������
%� ���� ����� ��� �����	���������� �� �������� ����� ���	���	
������������ �������� ��	 �������� ����� ������� �� ���� ��
���������	 ���������������� ��� &�F� ,����������� &���
�
4��� "#*$� %���������7� 6������������ "#3$ ��	 %�7� 6�������
"D$ ��� ��� �������������������	 ������������ ������� ����	 ��
���������� 	������� ������������� ����� ����� ������� ���
������� ������������ ���� � ��� ���������� �������� ��� ����
��� ��� �������������� ����	� �� ����� �� �	���� ������������
��	� ��� ���������� �� ��� 	����� �� ������ ��������� &�
�/����� �� ��� ������ ���� �� ���� 2��	 �� 1����������7� ����
������� ,����������� ������ "#($ �� ����� � ����� �� ������
������ �������� �������
�� �� ��������� � ��� �� �������� ����
��������� ��	 	������� ������������ ����� � 	���������	
B����� +������ ,��� ��� �����	 ��������	 ���� ���� ���
������ ���� � 	���������	 B����� +����� ��� ��� � 	�<�����
������ ��� ������ ����� ���� ��� ���� �������� ����� ��	
���� ���� ����� �� ���� ����� �� �/�������� �����������
	��� ��	 �������� ������������� ���� ������� ��� ������
�� �������� �������
�� ���� ������� �� ���� ������ &������
	�<������ �� ���� ���� �������� 	��� ��� �����	�� ��������
�������� ����������	 ������� �� ����� �������� ����� ��
� ��
������� ������������ ��	 �������� ����������� �
�� ��������
�����

��� &8,�� ������ ":$ �� ������� �	���� ������������ ����
���� %� �� ����	 �� �� �������
� ��������������� �� �����
��	�� ������� ��	�� ���� �������� ����� ��������� ������
������� ���� �� ���� ���� ����� ��	�� �� �������� �������
���
& ������� ���� ���� �������� �� ����� ������������ �� ���
�������� &��� �������	 �� ��� ������ ��������	 ����� ���
�����
� ��������������� ��0����� ���� ��	�� �� �� ���������
���2����	 �� �������� ��� ������� �� ��� &8,�� �����
���� ������� ������� �����	� �����������
� ���������������
��� ���� 	� ��� ���
�	� ��� 	������ �� ��� ���� ���������
��� �� �Æ������� ��������	� ;� ���� ��� ���� ���������
��� �� 	��� ���� 
��� ��� ��������

+������� A������7� "#G$ ���
�/ ������������ �������� 	��������
� �����	 ��� ���������� ��	�� �� �� �	���� �������� ����
�����	 �� ����	 �� �����	�2���� ����������� ��	 ��0�����
�������� ����������	 ����������� �� �� �� ��� ������ ��������
��� �������� �������� 	�
����� '�� �������� �� 	�<����� ����
��� ���
������ �������	 ���������� �� ��� ����� ���� �� ���
�������� ��������� �� ��	�� ���� ��� ����	 �������� ����
���� ���� ��� ������� ����� �
��	��� ����� ������������
;� ����� ����� ����������� �� ���������� ��	� ��������
���� �� ��� �����/� �� � ����������� ����� &		���������� ���

205



�������	 �������� �� H�/����� ����� �� ��� ��� �� ���� 	���
������ ���2���������@ ����� 	���������	� ������� ����������	
�� � ������� ���	 �� ������ ����������	�

3. MOTIVATION AND ASSUMPTIONS
%� ���� ����������� �������� ������ �������� ��� �/�����	
�� �� 	������	 �� �� �	���� ������� )��� ����	�����	 �
�� ��
����.� ;��� �	���� 	��������� ����
��� ��� ������ �����
������ ���	��� �� ���� �������� ��� �������� �� ���� �������
&� ��������	 ������� ����
��� ��� ���� ������������� ����
��� ��	�� ��� �/�����	 �� ���� ����� �������� ���������� %�
�� ��������� ��������� �� ��	�� �������� ������ ��	�� ����
��� ���������� �� 	���������� �������� ����� ���������� ���
������� �� ��� E-������ ������������ ������ "#=$ ����� ����
E-� ������ �� ���	 �� ��� �������� 	�� �� ������ ���� ����
��� ��	 ��� ���� �� ����� ��0��������� ;� ����� � �������

�������� ����� �� ���� �� 	�
���� � ������ ���� 	��� ���
��0���� 	����� ���� �� ����� ���� ������� �� ���� ��� �� ����
��� 	������	 �� �� �	���� ������� ��� ��� �����
� ��� ����
��
�� �� ������������ ��������� �� ���� ���� ����� ��	�� ����
������� ��	� ��������� ����������� ��	 ����� �����������
���� ����� ������� ��	�� �
�� �������� ���� �� ��������
���
�������� ����� ���������� ���� ������� ��� � ������ �����
�������� �� �	���� ����������� +��� ��� ������������ ����
������
� �� ��� ���	� ����������� ���	� �� �Æ������� �����
����� �
�� �������� ���� ������ ��� ������� �� ���
�	� +��
�������� 	�
���� �� ��� ����� ���	� ������������ �� �� ������
���� ������� ��� �������� �����/� ����������

3.1 Problem Statement
E�
�� � ������� �� ������ ��	�� ����� �. ���� � ����� �����
���� �� ��� ��	�� �� ����� �� ����� ������� ��������� )��� ����
����.� ��	 �. ������ ��	�� ������ ��	�� ����� �� ���� �����
��� ���� ������� ��� 	������� ������� ���� ������ ��������
��� ��������� �� ��� ��������� ��	�� )��� ��������.�

3.2 Ranging Technologies
��� ���� ���������� ���� �� ���� �� ��� ���������� �� ����
��	�� ��� ���������� ������� 	�������� ������� �������
��
��	 ����� ���������� ���� ���������� �� ��������	 ���	���
�
������� ������������� ����� ��� �� ����	 �� ���� �/����
��� �������� ��� �	��� ��	� �� ":$ �������� ���� �����
���������� 	������� ������������ ��� � (������ ����� ��	
:����������� ��������� ��� �	
����	 ������� ��� �����
�
������ ������ ��	 ������ ������������ 8�/����� ":G$ �	
���
����� ������� 	�
���� ����	 �� ��	�����	 ���������	 ����
� :G������ ����� ��	 G�( ���������� ��������� %���������
"*$ ���� 	���� ��� ������ ��	 	�
���� ���� ���� ��
� ��� ����
������� ���������� &�� ����� 	�
���� ��� *GB8� ����������
��������
��� ��	 ��� ����	 �� ������������
�� �������������
�	��� �������� ��� ������������
�� ������� 1+ ��	 ���
�������� �������������� %� 8�/�����7� ������ ��� �������
�������� �� ���������� ���� ���� 0������ ���� �� ��� 	�
�����
A������� �� �������	 �� �����	��� ��� ���� ����� ��� ����
	�
��� �� ������	� ���� A���� ������� ������������
�� ��
�����	��� ���� ������� ��� ��������� �������	 ��	 ����������
	��������� E���	7� C,'� ��	����	 �������� ������� ����
��� ��� ���� 	���
�� 
��� �������� 	������� �������������
%� ���	��� ��
��������� ���� ������ ��� � 3G������ ������
1�������� "3$ ���
�	�� � 	������	 ���	� �� ���� ������� ,����
������� ������������ ��� ���� �������� 	������� ��������
����� �� ������ ������� ��� �%6B7� "##$ ����� ����� 2�	���

��
� �� �<����
� ����� �� 9G ������ ��	 # ���������� �����
�������

+�� ��	��� ������������ �� ���
���
� ��������� �� ��� �� ���

�� �� ���������� 	������� ������������ ������� �� �� �������
��������� ��� ���� ��	 ������
��� ��� ������ %� ��� 	�������
����������� �/��������� �� ��
� �/���������	 ��� �����
���� �� ���� *GB8� ���������� �����	������ ������� ��	 �����
���� 6������ �����	����� ��
� ������� 	����� �� 	������
���
����� �������� ��� �������� �� ��	�� ������� 6������ ������
	����� ���	��� � ������� ������������ ������� ��	 �������
�����	����� ��� � �����	����� �������� '�� ������� �����	���
��� ��
� � DG�	����� ���� ������ ��� ������� �����	�����
��
� � (DG�	����� ���������� ��
����� ��� ��� ������������
��	 #9G�	����� ���������� ��
����� ��� ��� �����
���� ;���
����� �����	����� ��� ����� ��� ���������� ��� �����
� ��
�<����
� ����� �� 3 ������� ���� G�3����������� ��������
���� ���������

3.3 Establishing and Merging Local Coordi-
nate Systems

��� ������� ��������� ������ ��	�� ��� �� �������	 ������ ��
������ ��������� �� �� ������������� ������������ � �����
����	����� ������� '�� �����	 ��� ������������ � ����	��
���� ������ �� �� 	����� ���� ��	�� ���� ��� ������� ��
�������� ���� 	������� ������� )���� ���� ����� ���������	
�� ����� ����� 2�	���.� ����� ��	�� ��������� � ����� ����	��
���� ������ �� ����� �� 2���� #� %� ���� 2���� ��	�� �� �
��	 I ��� �0�����	 ���� ����� ����� 2�	���� ��� ��	�� ���
����������� ���� ���� ����� ��	 	���	� �� � ����� ����	��
���� ������� '�� �������� �� ���� ��	� � ������� ��� ������
���� ����	������ )G� G.� ����� I ��� ����	������ )�I� G. ��	
� ��� ����	������ )�� ����� �� ����.� ���� ����� ����	��
���� ������� ��� �� ����������	 �� 	�<����� ������ ����	� ���
�������� ,���� ��� ��	�� ����	����� ��	 ����� ����� ����	��
���� ������� ����� ����	����� ������ ��������������� ����
����� ��� ��	�� �� � ���2�	 ����	����� ������� ���� ������
���� ��� ���
������ 	��� �� ��� 2��	 �� ������ �������� ��	
�� �� �/������	 �� 	����� �� "($� '�� 	��������� ������ �� ���
�� �������� ��	� ��������� ������ ���� ����	����� ��������

.

.

Γ

⇓

α .

������ �� 	
����
���� ����� ���������� ��
���


�1����� �� �� :G� ��� ���� �����
���� ��� ���� ��� ��� 	��
������� ����� �� ����	 �������� ��������� �<���� ��	 ��������
����� �����������
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3.4 Sensor Network Viewpoint on Localiza-
tion

%� � ������ ������� �������� ������������ ����������� ����
���� ����� �� �����
� � ������ ������� ����� ���� � �����
������� ���� ���� ������ ��	� 
���� ��� ����������� ������
��	�� �� ������	 �������� ��������� ������� �������� ��������
���� 	��� ��� 
������ ���
���� +����������� �� 
��� ����
��� �������� �� ����� �������� �� ������� ���� ��� �������
�������
� ��	 �������� ������
�� +��� ���� ���������
� ����
��� ��	�� ������� ����� ����	������� ������ ����� ���������
���	 ��	 ���� ��� ��� ��������� �� ������� ������� �����
���������� ;� �����	�� ������������ �� ��� �� ��� ����� �����
	������� ��������� �� ��� ������� ���� ����� ����� 	����� ���
������� ������ �� ������� ���������� ,���� ��� 	����� ��� ����
���� ��������� ��� ��0����	 ������	�� �� �������� �� ������	
�� ������� ����� ���� �� ��������� ��� ������� �� �
����� ����
��� ��������� ����������� ��	 ������������ ������� ��
�����
��	 ������� ������������

4. SOLUTION OUTLINE
%� �� �������� ���� ��� ��	� ������������ ������� �� �������
�� E-� "#:$� %� ����� �� ���� ������� �������	 �� �������
��	�� ��� �������� �� ��� ������� �� ��������	 �� �����
������ ��� ����	���� ������� ��� �������	 ��	 ��������	
	�������� ������� ���� ������ ��	 ��� ������� ��	�� %�
�� �	���� ������� ����� ��� ������ ��������� ���� ���� ���
����� ��	� ���� ��
� �� ����� ����� ������� �� ���������� �
	�<����� �����	 ��� ���������� ��	� ��������� ���	� �� ��
������	� %� ���� ����� �� �/���	 ���� ������ ������ ��� ����
������������ ��������� ��������	 �� E-� �� � �������� ���
�������� ���� ��������� ������� ��	�� ���� ��� ��� 	�������
��������	 �� � ��	� ���� ����� �������� �� ����������� ����
����� �������	���� ��	�� ���� ������� ��������� �������	
������� ������ ��	 ��� ������� �� ���� ���� ��� ?������ ���
������ ����� ���������� '�� �� ��� ���� ���������� �� ����
������� �� �� ���
��� ����� ������������ �� ��� �������� ��
���
��� ���� �� ��� ����� �0����� ���������� �� �������� ���
��� ������� ��	� ��������� ��������������� %� ��� ��������
��� ������� ��	�� ����������� �� ��� �� � ���������� �����
�������� ������� ���� ��� ���� �� ���
�	 ������ �� � �������
��	� �� �� � ����� 	���������	 �������

��� ����� ��������������� ����� ����� �� ����� ���� ������
	������	 �� 2���� :� A����� ��� 2��� ������ ��� ��	�� ����
� ���� ����������	 �� �
�� ����������	 ���2�������� �� ���
������ ��	 �������� ��� ����������� �������� )������� 3�#.�
���� ���2�������� ����� � ������ �� �� ����� � ����������
�0������� ��	 � ������� 
�������� �� �� 	��������	� 6���
�������� �������� ���� ������ ���� ���� ������� ������
�� ��� ����������� ������� ��� � ���0�� �������� ���������
��� ��	�� ���� 	� ��� ���� ��� �������� ��� �����������
�������� ������ ����������� �� ���� ���2��������� ��� �����
���� ��������� ��� ���� ��	�� ��� 	��������	 ����� �� �� ���
�������� %� ��� �����	 ������ ���� ������� ��	� ��������
�� ������� �������� �� ��� �������� ����	 �� ��� ����� ������
��������� ��	 ��� ��������	� 	������� ������������� ����
�� 	�������	 �� ������� 3�:� ��� ������� ��������� �������	
�� ���� ����� ��� ���	 �� ���������� ��� B����� +������ ��
��� ����	 ������ ��� ����	 ����� �������� � B����� +�����
�� ��2�� ��� ������� �������� ��������� ��	 ������� ��� 2�
��� �������� �� ��� ��	� ��������� )������� D.� +������� ���
������ ����� ���� ��� �������	 ��	� ��������� �� ��2�� ���
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�������� ��������� �� ��	�� ���� ����	 ��� ����������� �� ���
����������� ���� ���2�������� �� ��� 2��� ������

��� 2��� ��	 �����	 ������ ��� ��	����	��� ���� ���� �����
�� �� ������ ������� ���� ��� ���� ����� �� ��������� -�����
����� ��	 ���� ��� ����� �� ���� �� ��� 2��� ��� ������ ���
��������	 ��	 ���� ��� ��������� �� 	�<����� ������ 	��
���	��� �� ��� 	����	� �� ��� ������������ %� �����������
�� 	��� �� � ������� ����� )������ � ������� �������� ���
��� ����� �������� �� � ����� ������� ���	.� ��� ������� ����
��������� ���� ��� ������� ��	�� �����
� ����� ��������
���������� %� ��� 	���������	 ����������� ���� �� ���	� ����
��� ��������� ����������� 	����	� �� ��� 	����	� �� ���
������������ %� ��� ����������� ��0����� ?��� �� ��	�������
�� ���/������ ��� ������������ ������� ��� ���� ������� ���
�����	 ����� ��	 ���������� %� ���� �������� ������������
�� ��0����	 ��� 	���������	 ����������� ���� �������� �����
��0����	 ��������� �� �����
�	�

5. INITIAL CONFIGURATION
4����� ���������� �� ���
� �� ������������ ������� ����� �
B����� +����� )� ���	���� 	������ �����	 ��� �������0�����.�
��� ���� ��� �� ���
��� ��� �������� �������� ��� �����@ #.
��� ����� ������� ��� ��
� �������� �������� ��������� ��	
:. ��� ������������ ������� ��� ���
���� �� � ����� �����
���� �� ������� �������� ��������� ������������� ��� ����
������ ���� ��� ����� ���2�������� �� ��� B����� +����� ���
� ���0�� ��������� ��������� ��� B����� +����� ��� ����
���� � ����� ������
�� ���� ��� �� ���� ������� �� ��������
���� �� ����������� ������� ��� �� �� ��� ����� �������� ��
� ��	�7� ��������� %� �		����� �� ����� �� ��� B����� +�����
�� ��� �������� ����������	� �� ��� ���
���� �� ����� ������
���� � ���	 ��� �� ������� �������� ��������� �� ���������� %�
���� ������� �� 	������� ��� ��� �������� �
��	� ����� ���
��������� %� ��	�� �� ������ ���� ��� �������� �� ���0��� ��
�����	��� ��� �������� �� ����������� ������ �� �
��	 ����

������ �� ����� ������ �� ������ � ��� �� ������� ���������
���� �� ����� �� ��� 2��� ��������� ����� � ������ �����������
�������������

207



5.1 Phase 1: Computation Subtrees
& ����������� ������� ����������� � ���2�������� �� ���
������ ��	 ������� ��� ����� ��� �������� �� ��� ��������
��������� �� ��� �������� ��� �� ���0���� 	��������	� ����
�� ������� �����
�	 �� ��������� � ���� 	��������	 �� �������
���� �
���	��������	 ��� �� �0������� � � 
�������� �� �� ���
������	 ��	 �� ����� � �0�������� 4����� ���������� �� ���
�
����� �0�������� �� 2��� 	�������� � ��� �� ��0��������� ����
������ ��� �������� �� ��� ����� �� ������� �� ���0��� 6���
�������� �������� ��
� ������� 	�������� �������� ���� ����
������ �������� ���� �� 	������ ��� 	���������	 ��������
���� ��	�� �� ������� D�:� �� 	�������� ��� ��0��������� ���
�������� ���0������ �� 	�
���� ��� 	��������� �� ��
������
��� ��0��������� �� ��� ������ ��� ���������������� ,���� ���
�� ������� ����� ��0��������� �� ��
�� ��� �������� �����

5.1.1 One-Hop Multilateration Requirements
%� ��� ������ ��� ����� �� 2���� (�� ��� ����� ��0��������
��� ��� ������� ��	� �� ��
� � ���0�� �������� �� � :A
����� �� ���� �� �� ������ ����� �� �� ����� ����� �������� %�
��� ������� ��� �� � �������� ����� ��� ��	� ���2�������� ��
���������� ��	 ����� �� ���� ���� ��� �������� ���������
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5.1.2 Two-Hop Multilateration Requirements
5���� ��� ������� ��������������� ��0��������� �� � ��������
������ �� ��������� ��� ���������	��� ��� �� ��0��������� ���
� ������� ���������������� & ������� ��������������� ����
������� ��� ���� ����� ��� ������� ��� ��� ������ 	�������
��������	 �� ��� ��	� ��� ���� ��� ������ � ������� ��	���
���� ��� ������� ��	�� %� ���� ���������� ��� �� ���� ���
����� ��	�� ��� ������� ��� ������ �������� ����������� ��	
��� �������	���� 	������� ������������ ������� �������
��
��	 ��� ������� �� ?������ �������� ����� ���������� ,��� ���
������� ����� ���� ������� ��	� ���	� �� �� ��������	 ��
�� ����� ����� ��	��� ��� ����� ��	�� ��� ��� ��0����	 �� ��
�������� %�����	� ������� ��	�� ���	 �� 	�������� �����
�� ����� ��������� ��
� ���� ��� �������� �������� ��������
��	 ��� ���� �� ��������� ������ �� 	�������� �� ����� ���
������ �������� �� ���0��� +��� ���� ���������
�� �� ������
���� � ��	� �������� �� �������
��� ���0�� �� �� ��� �� �����
����� ��������� ���� ��� ������ ������� �� ����� ��������� ���
�������
��� ���0��� +����� (� ����������� ��� ���� ����� �����
C�	�� ( ��	 * ��� ������� ��	 ���� ��� ���� ��������	
�� ����� ��	��� C��� ���� ���� ��� ���������
� �� ��	� (�
��� �� ��� ����� ���������� �� �� �������� ��	� *� C�	� *
����
��� ��� ��� ���� �������� ����� �� ������� 3 ��	 D� %�
�� ������ ���� ��	� ( ��� � ���0�� �������� ��������� ����
��	� * ���� ��� � ���0�� �������� ��������� %� ����
��� ��	�
* ��� � ���0�� �������� ��������� ���� ��	� ( �� ���� ����
��������
� ������� �� �� ��������	 �� ( �����������
� ��	��
� #�: ��	 *� ���� ���	����� �� ��������� ��� ��� ��Æ�����

�� ��������� ���� ����� �� ���� ��� �������� ��	� ��������
��������� ��� ��������� ���������� ���� ���� ��� ���
�
��0�������� ��� ����	 ���� ���� ��� �������� �������� �����
�����

��������� #� �� ���� � ��
��� ����
��� ���
	
�� �����
	
��� 
	 
� �������� 	��	 �� ������� ���� �� ������	�� 	�
�	 ����	 	��� ����� 	��	 ���� ��
��� ����
��� ���
	
����

��� 2�� ��������� ���� ������� ���� ��� ���	������ �� ���
������ ��� ����� � ��� ��	�� ���� �������
��� ���0�� �����
����� ���	 �� ���������� ��� �� ������� �����	 ��� ��� �� �
�������� ����� %� ���� ��� �� � �������� ����� ���� ��� �������
��	� ���� ��
� ��� �������� ��������� �� ��� �������� �� ���
�������� �������� �� ��� ���0���

��������� :� �	 
� �������� �� �� ������� ���� 	� ���
�	 ����	 ��� ������� ��
�	 	��	 
� ��	 ����
��� �
	� 	�� ��	
�� 
	� ������� ��
�	��

&������� ��� ��������� �� ��� ��������� ������ ��� ��� ������
��� ��� ���� ��� ���� ���	����� ����� ����� ������������� %�
2���� *� �������� ���� ��	�� &�6 ��	 A ��� ����� �� ��
�
���0�� ���������� ��	� 4 ����� �� ��������� �� ��� �������� ���
������ �� ���0��� �� 	� �� ��	� 4 �������� ��� ������ &46�
64A ��	 &4A� 5���� ��� ����� &4A� ��	� 4 ��� ������
���� ��� 	������� J&AJ� %� ��� �������	 	������� &A ��
�0��� �� ��� ��� �� 	�������� &6 ��	 6A ���� ��� ��	��
��� ��������� � ����� ��	� 4 	���	�� ���� ��� �������� �� ���
���0���
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&������ ���� �� ����� ���� ��� ����� �������� ��������
�� ����� �� 2���� (�� C�	�� ( ��	 * ���� ��
� ( �����
�� ��	�� ���� �������
��� ���0�� ��������� ��� ��� �����
�� ��������� ����� ��� ��� ��	�� ��� �� ������	 �������
��� 
�������� �� ��� ����������� ������	 �� ��� ��������	�
	������� ������������� �� �
��	 ���� ��������� ����� ���
����� ������� ��� �� ������	 �
�� ��� ��
�� ������ )��	��
# ��	 : �� ���� �/�����. �� ��� �� �		������� �����������

��������� (� �� ���� ��
 �� ������� ����� 	��	 ���
	�� �
�� 	� ���� �	�� �� � ����	�
�	� 
	 
� �������� 	��	

�8��� �� ������� ��� ��� ���� 7�0���7 ��� ������� ��	 ��������
��� �� ��� �/���������� �� �������� �� ���� ���	 �� �����	��
��� ����� �������	 �� ��� 	������� ����������� �������
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���� ���� ��� �	 ����	 ��� �
�� 	��	 ������	� 	� � �
����	
���� ��� 	�� ����� ���� �� �������� �� 	�� �	�� �����

��� ������� �� 2���� (	 �� �� �/����� ���2�������� ����
�����2�� ���� ��������� 4��� ������� ��	�� ( ��	 * ��
� ��
����� ��� ��	����	��� ���������� C�	� * ��� ������ # ��	
��	� ( ��� ������ :� ��� ���
� ����� ���	������ ��� ���
	�
�	����� ��������� ��� ?������ ��Æ����� �� ��������� ����
�� �� ������� ��	� �� ������ ��� ���� ���� �� ����� �����
������� ���� ��� ������� ��� � ������ �������� �������� ���
�������

5.1.3 N-Hop Multilateration Requirements
�� 	�������� �� ��	�� ������	 ������ � ���� ���� ��� ����
���� ��
� ���0�� ��������� �� ��� � ������� ��� �� �������� ��
�� ��� ������ ��� ����� �������� ���� ��� ������� ��	� ��
���� �� �� ��� �� ����� ����� ��������� ���� �������
��� ���0��
���������� %� ��� ��	� ��� ����� ��������� ���� 	� ��� ���
���	� ���� �� ����� �������� �� ���0��� ���� � �������
� ����
�� �/�����	 �� ���� �������� �� 	�������� �� ��� �������� ��
���0��� �� ���� ��� ��0��������� �� ���	����� ( ���� ��	�
���	 �� �� ��	����	��� ��������� �� �����	� ;� ����� ��
����� ��	�� �� ���	 ��	��� ���� ���
���� ����� ���� ����
��0���� �������
� ����� �� ��� ���� ��	� �� �� ��	����	���
���������� &� �
��� ����� ���� ��	� ������ �� ��� �������� ���
���	����� : ��� ���� ���� ���� �������
� ��������� �� ��
��
�� 2���� 3� ��� ��������� ��������� ������ �� ��� �������
��	� ��	 ���������� � ����������� ������� �� ���
������ ���
������� �� � 	���� 2��� ������ �������� ��� ��� ���������
������� ��0���������� +�� ����������
� ��������� �� ���
�	�
��� ������ 
������ �� ��� ��������� �� &� ���� ��	� ��� �����
����� ������� ���� ��� ������ ��� � �������
��� ���0�� �����
���� ��	� ����� �� 2�	 ��� ������� ��� ��	� ��������� 
�����	
��� � �������
��� ���0�� ��������� ��� ��������� ����������
���� � ����������� ������� �� �����	� %� ��� 	���������	

������ �� ��� ���������� ���� ������� ��	� ���� ���	� ��
���� ������� �� �� � ���� �� ��� ����������� �������� ��	
����� �� ��� ��������� ��� ���� �� ��� ���� �������� 5����
���� ������������ ��� ��	� �� ���	� �� ������	 �� � ���� ��
����� ��� ����	 ������ �������� ��2�������

5.2 Phase 2: Computing Initial Estimates
4����� � B����� +����� ��� �� ������	 �� ���	� �� �� ��������
����������	� �� ���
��� ��� 2���� ���� ���
������ �� � �����
�������� �� ����� � ������ ����������� ������������ ����	
�� ��� �������� ������� ������������ ����� �� ��� �������
��	 ��� ������	�� �� ������ ��������� �� ������� �� �������
�������� �������� ��� ���� ������� ��	�� ��� ������� �����
����� ��� �������	 �� �������� ��� 	������� ������������
�� ����������� �� ��� / ��	 � ����	������ �� ��� �������
��	��� +����� D ����� ��� ��� 	������� ����������� ����
��� ������� � ��	 � ��� �� ���	 �� ������ ��� / ����	�����
����	� ��� ��� ������� ��	� 6� %� ��� 	������� ������� ��
������� ��	 ��� ������ � �� � ���� ��� � ����	������ ��
��	� 6 ��� ����	�	 �� � �� ��� ���� ��	 �� ��� ����� �� ��� �
����	����� �� ������ �� ���� ��	 ��K�� ���������� ������
� ����� �� ��� ���� ���� ���� �� ����	� ��� ����	������

�%� �������� �� ����� � 	���������	 ��������� ���� ��� ����
����� �������� ������ ��	 ��� ������ � ����������� ���� �� �
����� 	���������	 ������ ����� �� ���� �����	����� ��� :����
�����������	 �� ���� ��	�� ���� ��������� �� ������	 	��
�� ����� ������������

(����
� ��	� �	� ��	� �	 �� ��� ������ ��	 �
������� H�� ���� �����2�� �� ��� ������ ��	� ��
��� ��	� ���� ��������	 ��� ����������� ���� �������
������� �� ������� ���� � ���� �� �	��� ����
���� �� ��� ����������� �������� ����������
�� ������� C5,,
JJJJJJJJJJJJJJJJJJJJJ
	
�� ��5��0��)�� ������� ���������.
����
�$ �� ��� �� ��� ���������

����  @LG M � @L G ���
��
� ����  @L #M � @L # ���
$�� ���� ������ �������� � ����

�$ � �� �����	 ����
����� �� �� ��� ������
�$ � �� ��� ��� ���� ������ ��������
�� ��� ��	� ���� �����	 �� ����
���� � �� 
�����	 �� �M
	��������  ��� ��� ��	� ���� ���
������
�����	 �M  @L  K #

���
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���
���
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�� � ������� ��� ������ �� ��� ������� ������ ���� �� ��
�K �� �� ��� ����	� ��� �7� /�����	������ ���� ������� �� �
��� ���)�K�. ��	 ��K)�K�.� 4� ������� ���� �����������
� ��� 	�������� ���� ��� � ����	����� ����	� ���� �������
�� ������� � ��	 � ��� �� K)�K �. ��	 ����� ���� �����
����� ������� ��� �������� ���� ���	 ��	� ����	 ���� ��	 ���
�������� ����� ���	 ��	� ����	 ���� ���� ������� ��� ����
�	�� �� ������	 �� ��� � ����	������� ��� ��	� ���� ����
����� ��� ����	� �� ��� � ��	 � ����	������� �� ���������
� ����	��� ��/ �� ��� ������ ����� ��� ��	� ����� �� ���
���� ���� ����	��� ��/� ��� ��������� �� ��� ��� ������� ���
������	�	 �� ��� �������� ����� � ������� ������ �����
���� ������	��� �� ��� ���� �	�� �� 	������� 
����� �������
��� ����� ��� �������	 	�������� ������	 �� ���� �� ��������
��� ������� �������� �������� �� � ��	� �� ����� �� �� �� ���
������ �� ��� ����	��� ��/� ;��� ����� ����������� ���
�������	 ���� ��� ���	������ ��� �������� ���0������� ����
���
�	� � ���	 ��� �� ������� ��������� ��� ��� B����� +�����
���	 �� ��� ��/� ������ ��� ��������� ������� ��������� ��� �
#G ��	� ������� ���� ( ������� �� ����� �� 2���� =� '��
��������� �� ���� �����	 �� ���� ��� 0������ �� ��� �������
��������� ��<��� ���� ��� �������������� �������� �� ���
���
�/� ��� ������� ��	�� ���� ��� ������ � ���
�/ ����
������	 �� ��� ������� ��� ���	��� ���	 ������� ����������
%� ���� ���2���������� ����� ���� �� ��� ������� ��	��
��� �����	� ��� ���
�/ ���� ��� ������� ��������� ��� ����� ����
2������ %� ��� �/��������� ���� ����� �������� �� ���������
������ ���� ������� �������	 ��� ������� ��	���

6. PHASE 3: POSITION REFINEMENT
%� ��� ����	 ������ ��� ������� ��	� ��������� ��� ��2��	�
����� �������0����� ����������� E�
�� ���� ��� ������� ����
��������� ��� ����� ���� �����	 ���� ��
� ��� ������� �����

���� ��������� �� ��� �������0���� ������ %� ��� ���������
������ �� 	���	�	 �� ��� � B����� +������ ����� �� � ������
��
� �������� ��� �������0����� ����������� & B����� +�����
��� ������ ������ ������� �� ��� H�/������� ��	 �/���	�����
���� & B����� +����� ���
�	�� � �������
� �������� �� �����
�0����� ����������� ��� ���� ���������� �� ��� B����� +���
��� ���� ��	� �� �� ��������
� ������ ��� ��� ������� �� ����
����������� ���� �������� ������� ��	������� ��	 ���� ����
	������ ����	 �� ��� ���
���� ������ ����� ��	 � ������
��	��� ����� ���������� ��� ������ ��� ������������� ������
��� ��	 ��� ����� ������� ����� �� ��� B����� +����� �� �

������� ��������� �� ��� ��������������� ��� ����� �����
���� �� ��� B����� +����� ���� ����� �� �� ��������
� ������
��� ��� ����������� �� ���� �� ��� ���� ����� ��� ��	�� �����
��� ������������ ������� �� ��������� &� 	�������	 �� �������
=�*� ��� �/���������� ��	� �� �0�����	 ���� ������� ���� ���
����� ��� ��	� �� 	��	 ��������� ���� ��� ��	�7� ��������
�������� �� ������

��� �������� ��2������ ����� ��� ��� �������� ��������
������ ����������	 ��	 	���������	� ��� 2��� ��� ��������
���� ������� ��������� �� � ������ ����� )��� � ������� ��	�
� ������� ������� ������� ���	.� ��� �����	 �� � 	���������	
�����/������� �� ��� ������� �������������� �� ����� ����
��	� �������
��� ��2��� ��� �������� ���� ����� �����������
��	 ��������������

6.1 Computing at a Central Node
5���� ��� ����������� �������� ��	 ��� ������� �������� �����
������ �� ��� ������� ��� ������� ��	� ��������� �� � �������
������ ��� �	��� �� ��� ����������� ������� ��
� � �����
	��������	 �� �
���	��������	 ��� �� �0�������� ����� ���
�� ���
�	 ����� ���������� ������������� ��� ���������� ��
�0������� ��� ��� ������� �� 2���� (� �� ����� �� �0�������
# �� &� �� ��� ��� ��� ����� ��� ��?����
� �� �� ��������
��� ����	��� ������� ��� �������	 	�������� ������� ���
��	�� ��	 ��� �������	 ���������� ����� ��� ��� ������ ��
��� ���������� ��������
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��� ���� 0��������� ��������� ��� �������	 	�������� ���
����� ��� ��	�� ��	 ��� 0��������� ��	�� ��� �0���� ����
��	����� ��� ��������	 	��������� ���� ��������� ��� ����	���
������� ��� �������	 ��	 ��������	 0���������� ��� ���
?����
� �������� �� : �� �� �������� ��� ���� �0���� �����
�
�� ��� �0�������� ��� 	�<������ �� ���� ���� ��� ��� ���
����������� �� ���� �� ���� �������� ��������������� �����
��� ���� ���	�

� )��� ��� ��� ��. L �
�
�

�
�
��� ):.

���� ���2/ � �� ����� �� �� � 	������ ��������	 ����	�������
�� ������	 �� ����� ����	������
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��� �������� �� ����� �0������� ����� � B����� +����� ��
	�������	 �� ��� ��������� �����������

6.1.1 Kalman Filter Implementation
& B����� +����� �������� �� ��� ������� � ���� ��	��� �����
��	 � ����������� ��	��� ������ ��� ������ �� � ���	���
���� �� ���� )�0������� (� ��	 *.� ���� ���� ���	������ N���
�� ����	 �� � ����� ��	�� �� ��� ������ ����
���� ������
�����	 �� �����/ �� �� �� � ���� ���� �������� ���	��

������� ��	 � �� ��� ����� ��
������� �����/ ��� ���� ����
	�� 
�������� ��� �� ��� ������� �������� �� ��� ����� ��
����
���� ��	 � �� ��� ������� ������ ��� ������ �� �� ��	���
�� ��� ������� ���� �������� ����	 �� � ����������� ����
��� ?��� �������	� � ���������� ��� B����� +����� ����
��	 �� ���
�� � ������ �� ��� ����	��� �� ��� 2����� ���
����	��� �� ��� 	�<������ ������� ��� ������������ )������
�����	 �� ��. ��	 ��� ���	����	 ����������� �N��� � N�� ���
	������� ������� ��	��� ����	 �� ��� ������� �������� �����
����� ����/ � �� ��� O������� �� N�� ���� ������� �� ���
������� ��������� ) ����	 �� N��� . �� ��� ���������� ����/ � ��
��� ����������� ����� ��
������� �����/� ���� �������� ���
����� ����� ��
������� �� ��� 	������� ����������� ������
)��� ����	 �� ��� ���������������� �� ��� ���������� ������
�� ������ ����� �������� ����� ���� ����	��	 	�
������ L
:G ��.� N�� �� ��� ��� �������� �������	 ����� ��� ���	���
���� ��	 ����������� ��� �������	� ���� ��� ���	������
����������� ��� � ��� ����� ��
������� �����/ � � ����/
� ����	� ��� ��� �	������ �����/� +�� � ���	 �����	������
	��������� �� B����� +������ �� ����� ��� ���	�� �� "#9$ ��	
��� � ���� ���	���� 	��������� �� ��������	 "#>$�

+�� ��� �������� �� ��� ����� ��������������� �������
�� ��
������ ���� ��� ������� �� ������� ����� ��� ��������� ��
��� ��	��� 	� ��� ������ �� ����� ��� ���� ��	��� ����� ��
��� ���	� %� ����� ��� ������ �� ��� B����� +����� ����	 ��
��� ���� �� ��� ������ �� �������
� ����� �0����� "#3$� 4���	
�� ���� �� ����� ��� 	��������� �� ��� �����	 ���� �� ���
B����� +������ ��� ����������� ��	��� ������
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P ����� P �� ���� ���	�2��	 ��������� )G�G# �� ���
�/���������.� %� ��� ��������� �� ��� ���� ��� �����
����� ���������� ��	 ��� ��� ��� �������� ����������
'���������

*� ��� ��� ���	������ N��� �� ��� ��� �������� N�� ��	
������� ���� ���� :�

��� ���� P �� ���	 �� �� ��	������ �� ��� ���	���� �� ���
B����� +����� ��	 ����� ��� ��� ��� ������� �� ���� ����

�������� +�� ����������
� �������� �� ���
�	� ��� �����
�� ��� B����� +����� �� ����� �� (�� ��� ������� ���������
)	�����	 �� �� ��	 ��. ��� �����	 �� 
������ N��� � �� N��� L
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����� ��� �� L "����� ����� ����� ����� ����$� ������ N�� ����
����� ��� ������� 	�������� ����	 �� ��� ������� ���������

N��� L

�
�����

�
)�� � ���.� K )�� � ���.��
)��� � ��.� K )��� � ��.��
)��� � ���.� K )��� � ���.��
)��� � ��.� K )��� � ��.��
)��� � ��.� K )��� � ��.�

	




�

����/ � �� ��� ?������� �� N�� ���� ������� �� N��� �

� L

�
������

G G ���	��
�
���

���	��
�
����

	�����
�
����

	���	��
�
����

G G
	���	��
�
����

	���	��
�
����

	���	��
�
����

	���	��
��
�����

	�����
�
����

	�����
�
����

G G
	�����
�
����

	�����
�
����

G G

	





�

��� ���
� ������������ ����� ��� ��� �����/ ���� ��	 ������
0������ ��� ������ �� ����������� ��������� ���� ��� ����
��� �� ��	��� ���� �	�� �� ��� �����������
� ������� ����
�������� ��� ����� �� ��� ����������� �����/ ��� %� �����/
�� ��� ������ �� ������� ��	�� 	��������� ��� ������
�� ������� ��	 ��� ������ �� �	��� 	��������� ��� ����
��� �� ����� ���� �������������� �	�� �		� ��� ������� ��
��� ��� ��	 ���� ��������������� �	�� �		� ���� ��������
��� ����� ��
������� �������� ��� ��	 �� ��� �0���� ������
��� ����� ���� 	����	� �� ��� ������ �� ������� ��	�� ��	
��� ����������� ����� �����/ � �� � �0���� �����/ ��	 ��
���� 	��������	 �� ��� ������ �� �	��� �� ��� �����������
�
�������� ����� ������� �� �����/ ����� 	����������� ��������
��� ������ �� ����������� ���� ��� �� �� ��������	� +���
��������� ���� ��� ���������� �/��������� �� ����	 ����
���� ��� B����� +����� ��� ���� 
�������� �� ��������� ��
����� ���� ���������� �� ���
����� 5������������� ����� ���
���������� ������� �� �� �������
� ������� �� ������ 0�������
��� ������ �� ����������� ��0����	 ��� ��� 2���� �� ����

���� ������������� %�����	� �� �
������ ���� ����������� ��
��� ����������� �� ��������� ��� ������ �� +,'-� &��
,&4 �������� 	 ����� ��� B����� +����� ���
������ ����
	C��� ���� ��� +,'-� ������� �������	 ���� &�,&4
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	���������� ���� ����� ���� �������� ��	� ��������� ��� ��
��������	 ���������� ����� ���� �����	� ���� �����������
������ �� ��������	 ����� � ��� ���� ��������������� �
����
���� �� ��� ������ ��	��� �� ���������� ���� ���� �� ��������
����� �� ��
� 	�
�����	 � 	���������	 �����/������� �� ����
�����	 � 	���������	 ����� ����������������

6.2 Computing at Every Node
%� ��� 	���������	 
������� �� ��� ���������� ����������� ��
��������� 	���������	 ������ ��� ������� ��	 ���� �������
��	� �� ����������� ��� ��������� ��� ��� ��������� ����
�� �����
�	 �� ���������� ����� ����������� ��	 ������
�������� ���� ��� ����������� ��	��� ���� �	�� �� �����
� 	�����������	 B����� +����� �� 	���������	 �����������
������ ��	�� �� ��� ���� A������ ;���� ��������	 � 	��
����������	 B����� +����� �� "::$� 1���������� "#($ �� ����
�������� � 	���������	 B����� +����� �� ��� ���������� ������
������� ������� ��� ��
������ �� ��� ������ ���� ����� ��
	�<����� ���� ��� ���
���� ���������� ���@

� ��� B����� +����� �/������ �� ��� �����/� �� � ����
�������� �������� &� �� ���� 	������� �� ���� ��������
���� ������� �
��� ������� ��	� �� ������ ��� ������
������� �������� �������� ��������

� ;� ��� �� �����/������� �� ��� B����� +����� ������	
�� ��� ���� ���� �� ��	�� �� ������
� ����������� ��	
�� ���
�	� � ����������� ���������� �� ����������	 
��
	���������	 �� ����� �� ����������� �
�����	� ���� ��
������� ��� ��� 
�������� �� ��� �������� ����� �� ����
�� ��� ���� �� �������������������	 	�
�����

� ��� ����������� �� ������	 �
�� � �������� �������
���� �� �� ���������� ������	 ��� �������� �� �	���� ����
������ �� ����� ��� ���������� ������ �� � �������0������
������������� �����	�

��� ��	������� ��������� �� ��� 	���������	 ������ �� ����
����� ��� ���������� �� ������ ��� ��	 ���� ���� ��	� ����	�
��� ����������� ���� �������� �� �������� �� ��� ���������
����� ���� ������� ��	��� ��� ��� 	������� ��������	 ��
�������� ���� ��� ��� ������� ��������� )�������	 �� �������
3�:. �� ����� ��������� �� ��� ��������� ������ ��� ����������
����� ���������� &� ���� �� �� ������� �������� � ���
��������� �� ����	����� ���� �������� �� ��� ���������� ��	
��� ��������� ��� �� �� ��	��� ����� ��� �������� ����������
���� ����������� �� �������	 ���� ��	� �� ��	� ������ ���
������� ����� ��� ��� ��	�� ����� ��� ���������2�	 ���������

P�

��
)N��.

� �
�
N���
��
� P


� +����� 9 �� � ��������� ������

��������� �� ��� ����������� �������� +���� ��	� * ��������
��� �������� �������� ����� ������� # ��	 3 ��	 ��	� ( ��
����������� '��� ��	� * ����	����� ��� ��	���� ��	� ( ���
�������� ��� ��� �������� ����� ������� : ��	 3 ��	 ���
��� �������� �����
�	 ���� ��	� *� C�	� ( ���� ����	�����
��� ��� �������� ��	 ��	� * ���� ���� �� ������� � ���
�������� ���� �� ���� �������� ���� ��� ���
���� ���������

�� ���	 ��� ������
� ���������� �� ��� ����������� ���� ���
����� ��� ����������	 ��	 	���������	 �������� %� ��� ������
��������������� ��� B����� +������ ��� ����������	 �� 6
��	 ���� �/����� �� ��� ��	� ����������
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5

Uncertainty of estimate 
after first iteration

Uncertainty of estimate 
after second iteration

Iteration 1

Iteration 2

������ -� (������ �
������
 �,�� �������� ���


%� ���� ������� ������	� �����������	� ���� ��� ��	�� ����
���
���� �� ����� ������� ��	 ��������� ��������� ���� ��
���	���	� %������ � ����������� ������� ���� ���� ���
����� ��	�� )��� :G.� %� ��� ����������� ������� ��	�� �
��	 � ���� ������� ��	 ����	���� ����� ��	���� �� ���� ��
�� ��	��� ���� ���� ����� �� �����
�	� ���� ����� ��	�����
������� ���� ������	 ������ ���� ��� ��������� ��	�� �� ���
����������� �������� ���� �����	���� � !����� �����������!
�� ��� ����������� ���� ����� ��� ��	�� ���
���� �� �����
2��� ��������� ���� ������ ��� ������� ��������� ���� ���
������ ���	����� 4������ �� ���� ��� ��	�� ���� ���	��� ���
������� �������� ����������

�� ���
��� ���� �������� ��� B����� +������ �� ���� ��	�
��� �/�����	 �� � ��0����� ������ ��� ��� ������� ����
���� �� ��� ����������� �������� ���� ��0����� �� �������	
����� ��� B����� +������ �� ��� ��� ������� �� ��� ������
������ ������� ���
���� �� � ���������2�	 ���������� ���
�����0����� �/������� �� ��� B����� +������ ����	� ��� ����
�������� ������� ����������� � ���	���� ���� ������� �� ���
������ �������� ����������� �� ���� ��	�� ���� �������� ���
��	� �� ������� ��� ������ ������� ��������
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+����� > �� �� �/����� ���� ��� �������	 ���:������� ����
�������� &� �� ���� 	������� �� ��� ��/� �������� �� 	�
���
���	 ��� ����������� �� ���:� �� �� ���� �� ������� +,'-��
�� ����������	 ��� B����� +������ �� &�,&4 ��	 ����
����� ��� &�,&4 �������� ��	 ��� &�,&4 6KK ���
�������� �� ���������	 ��� 2����� �� 6KK �� �� ��� ��� ����
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�� ��� ������� ����� �� ���:� ��� 2���� 	����������� ��� �/�
������� �� 	���������	 �������� ��2������ �� � ������� ��
(* ��	�� ��	 D ������� 
� ��� ������� ��	�� �� ��� ����
���� ��
� �� �
����� 	����� �� *� #3 ������ ����� ��	 ���
:G �� ����� �������� ����� �� ��� 	������� �����������
������� ��� /��/�� ����� ��� ������ �� ������� )��������
��	����. ����������	 �� ���� ��	�� ��� ��	� �	� ��� �����
�� ��� ���/�� ��	 ��� ���/�� ����� ��� ����� �� ������������
��� 
����� �� ��� ����� ������ ��� ������� ��� ����������	�
�� ������� L G �� ��� /��/��� ��������� ��� ������ �� ��� ����
���� ��������� )�������	 �� ������� 3�:.� &� �� ��� �� ����
���� ��� 2����� ���� ��	� ������ �� 	�<����� ��
��� �� ���
���� &���� � ��� ���������� �� �/������� ��� ��	� ��0������
�� ��� ����������� �������� � ������ ���	���� �� ����������	
���� 	��
�� ��� ����� 	��� ������ ��� ����� �������� %� ���
��	� ���� ��	� ������	� �� ���������� ��� ��	� �������� ����
� (����������� ��������� ��� ���� ���� ����� ������������
�� ���������	 �� 	�� ��� ���������� �� ��� ����������� ����
����� &� �/������	 �� 3�#� ����������� �������� ���������� �
����������	 ���2�������� �� ��	�� ��	 �������� ���� ����
�������	 ���2�������� ���
���� ��� ��������� ���� ����� ��
��� ����� 	���������

��� ��	�� �� ��	�� �/������� �� ��� ����������� �������
��0����� 	��� ��� ���	 �� �� �����2�	 ��� �� ���	� �� ��
���������� �
�� ��������
� ���������� �� ��� ��0������ ����
������� ���� ��� ��	�� ���� ����� ��	�� ������� ����� ���
������ ��	���� ��� �� �� ���������� ������ ����������� '��
�������� ��� �� �������� ���� 	���������	 ����������� �������
�� �� ����� A���������	 A���� +���� ������ )AA+�.� AA+�
������ �� ������	 �� �� ��������� ������� ��	� ������ ���
����������� ���� ��	 ��� ��� ��� ��� ����������� A����� ���
���
����� �� ��� ������� �� AA+�� ���� ���� ��	� �� �����	

�����	� ��� ��	� �� �������� ��	 ����	����� ��� �������� ���
������ ��	 ������ � ������ %� ��� �����	 ��������� �� AA+��
��	�� ������� ��	 ����	���� ����� ��������� &� ���� �����
��� ��	�� ���� ���� ��� ���
������ ��� ������ ��� ���� ���
����� ��� ��� 
����� 	������ ��� ���� �����
�� �� ����� ����
��	� �����	 ��������� ��	 ����	���� � ��� �������� ���
	���� ��� 	���������	 ��������� ��� 	��
��� ��� 	���������	
����������� ������� �� ����� �� 2���� #G� +����� > �����
��� ��� ����������� ������	� �� � ������� �� D �������
��	 (* ��������� ��� AA+� ��������� ��� ���� �/�����
��� �������	 ���� ":#$�

+������� ���� ���� ��� B����� +����� ���	 �� ��� �/�����
����� �� �� �����/������� �� ��� 	���������	 B����� +������
��� ������� �� ��� ��� �����	� ��� �� ��	� �0��
����� ��
��	�� ���� �/������ ��	 ��	��� ����� ���������	��� ��
����
���� ��������� �� �� �� 	��� �� "#($� %� ��� ���������������
�� 	� ��� ����������� ��� ��
������� �������� �� ��� ������
������ ��	��� �� ������
� ����������� ��	 ��������������
4����� 2�������� ���� 	����� 	������� �� 
���2�	 ���� ��� ���
����� �������	 �� ���� �����/������� 	� ��� ���������� ���
�
����� 0������ �� ��� ���������� ;� �����	 ���� �� �������
��� ��� ������� �� ��� ����������	 ��	 	���������	 ��������
��2������ ������� ��� ����� ����� ��� �� � ���� ����� ��
*: �������� �� 	�<����� ����� 
������ ���� #G �� #GG ��	���
+��� ���� ���������� �� ����	 ��� ���� ��� 	�<������ ��
��� ������� ������� ��� ����������	 B����� +����� ��� 	���


+�� ������� ��	 ���	 
��������� �������� ��� ����� ����
����� ��� ��� ������� ������	� �� ��� �
�� �������	
��	���

����� ��� ��������� )��������� ����Q.
!
�
���� @L �"��

$�� 
@L# @ :
$�� # � $�
�%�

�� ���� ���	 �$
	 �� #M �������"#$ @L ��	 ���

5��� ������� �� �$
	 ���� !@
�$ ��� !
��
����)
. ����

����
!
�
����)
.@L�"��M�������)
."!$@L���%�"
������� ��� �������� �������� ��	 ����	���� ��
�$ 
LG �#@L����).M 
@L
K #
��
� �&������"
'� L ����).��#M
����������	���)�&������"
'�.

���
�$ �������)
."!$L������ ����

���� ���	 �$
	 �� !M�������)
."#$@L "�� ���
��
� �$ ����� �� � # ���� �������)
."#$ @L������ ����

���� ���	 �$
	 �� # �������)
."#$@L��	 ���
��
� �$ ����� �� � # ���� �������)
."#$L���%�" ����

���� ���	 �$
	 �� # ���
��
� )R ��������� R. 
���

5��� � �������@
�$ �'�!�"��� L ��	�� �� �&���� ������ L �"��

����
������� � ��� �������� �������� ��	 ����	���� ��

���

�$
�

)N��.
� �

�
N���
��

( P

���� �'�!�"��� @L �"�� ���
���� ����������	���)�&������"
'�. ���

5��� ������� �� � ��	���	 �������� ����	����@
�$ �'�!�"��� L �"��

���� �&���� ������ @L �"�� ���

������ �/� &�
������� ����������� ���������
���,�� � &&��

�������	 �����/������� �� ���	 �� 
��� ������ +����� ##
	������ ��� ������ �� ��� ����������� ��� ���� 	�<������
�� G�G#3 ����������� ���� � ����	��	 	�
������ �� G�3*���
4���	 �� ���� ������ �� 
���2�	 ���� ��� 	���������	 ���
���/������� �� ��� B����� +����� 	��� ��� ���������� ���
����������� ���������

7. EVALUATION
;� �
������ ��� ����������� �� ��� ����� ���������������
�������
� ������� � ��� �� ������������ ��� B����� +���
���� ��� ����������	 �� &�&,4 ��	 ���� ��� �����	 ����
��� ���: ��������� ����� ��� &�,&4 �������� ��	 ���
&�,&4 6KK �������� ��� ��0����	 ��������� ��� ������
�������� ��� ����������	 ����	� ���:� 5���� ���� ����������
����� �� ������	 ��� � ������ �� �/��������� �� � ���� ����� ��
:GG 	�<����� ���������� '�� ���������� ���������� ��� ���
�� ����� ��� ���������� �� ��� �/���������� ��	�� ����
��	� ��� �� �<����
� ��	�� ����� �� #3 ������ ��	 ���� ��	�
��� ������� 	�������� ������� ��� ��������� ���� ��� ����
����� �� ��� ��	��� ��� ����������� ����� �� ��	���	 �� �
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������ ��� �������
�� �$ ��������0�� ��� ��
�
������� ������


���� ���� �������� ���	�� 
������� ���� :G �� ����	��	
	�
�������

��� ������� ���� �� ��� ���: �������������� �� �� 
�����
��� ������� ��������� �� ��� 	���������	 ����������� ������
�
�� � �������� �	���� �������� ��� 	���������	 ���������

������ �� ��� ����� ��������������� �� ����������	 �� �
������� ����� �� ���:� ���� ������� ����� ���� �������� �
������� �������� ���� 	����
��� ��� ������� �����������	
�� ���� ��	�� ��	 � ������	��� ��������� ��� ������	���
������� ���� ������� ��������� �� 	�������	 �� ������� 3�:�
����� ������� ������� ��0��������� ��� ��Æ����� �� ����
����������� �������� �� � ����� 	���������	 �������� �� ���
���� ��� ������� ��������� ��	 �� ������� ��� 	���������	 ���
���������� �������� &� ��� &6 ����� �� ��� � ��	�2�	

������ �� ��� %��� 9G:�## �������� ���� � #3������ ������
������� ����� ��	 �� �<����
� 	��� ���� �� :G�����

+�� ��� ����������	 ����� �� ���	 A�1 �� ��� ������� ������
���� %��� 9G:�## �� ��� &6 ��	 �� ��� ��� B����� +�����
�� ��� ����������� ������

7.1 Computation Cost Comparison
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'�� 2��� �/�������� �������� ��� ����������� �
�����	
������� ��� 	���������	 ��	 ����������	 ����������� �����
�	� �� �����	��� ��� ������ �� +,'-� �������	 �� &��
,&4 �� ������� ��� �������� ��������� �� ���� ����� ���
��������� ���	 ��� ���� ���� ��
� D ������� ��	 
������ ����
��� �� �������� ������� ���� #G �� #GG ��	��� ��� ����
��� �� �������� ��� ���	 �� ���������� �� #G� ��	 ��� ���

����� ���� ��� �
����� ��� :G ��������� �� ���� ����� %� ���
����� ��� ������� 	������ �� ���� �������� ��	 ���� ��	�
��� �� �
����� �� D ���������� ��� ��������
� ������ ��
+,'-� ��� ��� ����������	 ��	 	���������	 �����������
���� ��� ����� �� 2���� #:� +��� ���� ������� �� ����	 ����
��� ����������� �
�����	 �� ��� ����������	 �����������
��	�� ��������� ���� ���� ��� ������ �� ������� ��	��� %�
���� ���������� ����� ��� ����������� �
�����	 ������� ��
�� ����� ���� ��� ������ �� ��	��� ��� 	���������	 ����
�������� ��	�� �� ��� ����� ���	 ������ �������� ���� ���
������ �� ��	��� ��� ����� ��� ��� 	���������	 ���� �� 2����
#: �� (�=+,'-�� ������� ���� ���� ��	� ����	� �����/�
������� (�=+,'-� �� ������� �� �������� �� ��� �����
����� C������ 	������ ��� � ������� ����	 �� �����������
�
�����	� &� ��� ������� 	������ ���������� ��� ������
�� ����������� ��0����	 �� ��� ����������	 ��	�� ���������
�/������������ +����� #( ����� �� �/����� �� ���� ����� %�
���� �/������ ��� ������ �� �������� ��	 ������� �� ���
������� �� ���� ��������� 6������� ��� ���� �� ��� �������

����� ��� ������� 	������� ��� ������ �� ����������� ��
���� ��	� �� ��� ����������	 ���� �� ���� ������ ���� �������
�� ��� ������ �� ������� ��	�� �� %� ��� 	���������	 �����
	������ ���� ��������� ��� ������ �� �	��� �� ���� ��	�
����� ��� ����������� ������ �������� ���� ��� ������ ��
��	���

������ ��� ����������� ,
1 ���"��# ���
���

+��� ���� ���������� �� ������	� ���� ��� 	���������	 ����
�������� ��	�� �� � ������ ������ ��� ��������� ��	� �����
������ �
�� �� ����������� �� ��������	 � ������� ������
����� ��� 	���������	 ��	�� �� ������� ��������� ���� ����
�� ��	��� ����������� �������� ���� �� ���������� ���������
�� ��� ���� �� ��� ���� ���������� ���� 	� ��� ��
� ���	����
������� ��� H������ ����� ����������� ��� &�>#+1*G9# ���
������������� �� ��� ������������ ��	� �� ��� ���� �/������
��� &1=�A% ���� �� ��� ��������������� ��� � 2/�	�
����� ����������� �� �� ������� ��� H������������ ����������
�� ��� B����� +����� ����� � �������� H������������ ��������
&� � �����	 ��
�� �� ������������� �� ��� ��� �� ��� ����
���� �� ������������ ��� B����� +����� ����� 2/�	������
���������� �� ��� �/���������� ��	��

7.2 Localization Accuracy
�� 0������� ��� �������� �� ��� ������������ ����� �� ������	
��� ������ ��� 2��� ���� �
������� �������� �� ��� ���������
���� ������� ����	 �� ��� ����������� ����� ����������
�� ��� ���������� 	������� ����������� ������� +����� #*
����� ��� ��� ����� �� ��� ��������� ��������� �� ��� �������
������� ��� ����� �� ������� ���� ������� �� ��� ��������
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�� ���� �������� �� :G �������� ��� ����� �� ��� ���������
��������� 
��� ���������� �� ��� ������� �������

+����� #3 ����� ��� ��������
� ����� 	����������� �
�� ���
��������� ���	 �� ���� �/�������� ��� ���� ��� 	���������	
��	 ����������	 ������ %� ���� ����� ��� �
����� ����� ���
:=�= ����������� ���� � ����	��	 	�
������ �� #D ���

;� �����
�	 � ������� ����	 ���� �� �������	 ��� �����
�� ��� ��������� �� 	�<����� ����������� ����� ��
���� ����
��H���� ��� ��� ����� ��������������� ����	 ������� ����
���� �������� 	������� ����������� ������� �� ��� ��������
��� �� ������� 	���������� ��� ������� �� ��� ���������� ���
����� �� 2���� #D� ��	 � ����	 �� 	�<����� ������� �����
������� ���� #G ������� ��	�� �� #GG ������� ��	��� :G
�������� ��� ���� ���� %� ��� ����� ��� ������ �� �������
�� ���� ��������� D ������� ���� ���	 �� ���� �������� %�
���� ���������� ���� �� ���� ����	 ���� ��� ����������� ��
��� 	���������	 
������ 	����	�� ������ �� �������� �� ����
���� #GG ��	��� ���� �������	 �� ����� ����� ��� B�����
+����� ��0����� ������	 �� ���������� ��� ��������� �� ��	��
���� �������� ������� ��������� ����� ����������� �������
��	�� ���� ���� �������� ������� ���������� '�� �������� ���
������ �� �������� ���� �<��� �� �� ���� ��� ���� �� ��� ����	�
��� ��/ )�������	 �� ������� 3�:.���� �������� ;� �/����
���� �� ��� B����� +����� ����������� ��0����� ������ ��

��� ��	�� ���� ��� ������� ����	��� ��/�� ���� ��� �����
��� ��������	 ���
� ����	 �� �
��	�	 ��	 ��� ���
�������
���� �� ������� ;� ���� �� �/����� ���� �� ���� �� ���
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7.3 Communication Cost and Convergence La-
tency

��� ���
������� ������� ��	 ������������� ������� �� ���
����� ��������������� ��� ���� 	�Æ���� �� �
������ �������
�� ����� 	����	���� �� �������� ������ ����������� %� ���
����� 	���������	 ����� ���
������� ������� 	����	� �� ���
�
������� ������������� ���	��	�� ��	 ��� ��	� ��������
��� ������ 6��
������� ������� ���� 	����	� �� ��� ���� ��
��� ����������� ����� &� ��� ������ �� ��	�� ����������
��� ��0����� �� B����� +����� �/�������� ���� ���� ������ ��
�������� ��	 ���� ���������� �� ��� ��0����� ��� ��0����	�
��� ������������� ������� �� ������� ������ ��� ��� ��	���

;��� ��������� �� � ������ ����� �� ��� �������� ��� ����

������� ������� �� ��� ����� ��������������� �������
� ��
� �������� �� ��� ������������� ������� ��� ������������
��� ������� ���� ���� ������ �� ��� ����������� �������
��	 ����� ��	 ���� 	����	� �� ��� ����� �� ��� ������� ����
������� %� ��� ����������� ���� �� ������ ��� �����������
������� ���� �� ��� 	������� ���������� &� �� �/�����
� ������� �� #GG �������� ��	 D ������� ����� �����/��
������ 3 �� = ������� �� ���
���� �� ��� -������ %%% =GG
8� ������������ �
�������� ��� ������������� ���� ��
���� ������/� %� � ��������	 ������������� ��� ����������
���� ���� 	����	� �� ��� ���� �� �������� � ������� ���	 ��	
��� ���� �� ��������� ��� ����������� ���� ��	 ����� ����
��� ������� ���	�

+����� #= �� � ���������� �� ��� ������������� ���� ��
��� ����� ��������������� ������� �� ��� ����������	 ��	 	���
�������	 ����� �/�����	 �� � ������� �� ** ������� ��	��
��	 D �������� ��� 2���� ����� ��� ����� ������ �� �����
����������	 �� ���� ��	� 	����� ��� ����� ���������������
�������� ��� �
����� ������ �� ����� ����������	 �� *3>D
��� ��� ����������	 ������ ��	 **93 ��� ��� 	���������	 �������
&������� �� �
����� ��� ������������� ���� �� ������ ���
����� ��� 	���������	 ������ ��� �� �
�� 	����������� ��
����������	 ������ &		���������� � ��
������ ���	� �� ���
	���������	 
������ �� ��� ����� ��������������� �� ����� ��
2���� #9� ��� �
����� ���
������� ������� ��� ��� ��������
����� �� :G ��	 *G ��	�� �� ������ A����� ��� ������ ����
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�� ��� �������� � ��� �� ����������� �� ����� �� �����
� �
������
��� ����� ��2������ �� ��� �������� ��������� &� ����
������ ���������
�� ������������ �����	 ��
� ��� ������ ��
	���	� ���� �� ���� ��� �������� ��2������ ����� �� �	�
?������ ��� ���
������� ��������� P� +������� �� ���� ����
���� ������� �� ������ ����� ��� �������� ��2������ ����� ���
�������� �
�� �� ���� �� ��� ��	�� ���� 	����� ��� ��������

7.4 Localization Experimental Node
�� �/�������� ���� 	�<����� ����� �� ��	� ������������ �����
���� �� 	�
�����	 � �������� ������� 	�
��� ���� �� �����	
�����	� �/�������������� ��� �������� ������������� �����
��	 �� ���� 	�
��� �� ������� �� 56 4�������7� 1��� ��	
%6& ����� 55 ��	 56,&7� �	��� ��	� 	�������	 �� ":$�
%� �������� � ��� ����� ��	�� ���� 1+ ���������� ��	 �
*8� &����#G(, ��������������� ���� &��,� ��� 	��
���� 	�������� ��� ��� ��������� ���� �� ��� ��	� ��� ����
��
	�<����� ���� ��� ��	�� ��������	 ���
�� %� �		����� �� ���
&����#G(, ���������������� ��� ��	� ��� � *G8� &1
�854 ��������������� ���� ���� &����� ���� ���
�� ��

������ �.� ��� �6���������� ����

� ���� �������� ����������� �������������� ���� ���������
��� #4 �� +,&�8 ������ ��	 #(DB4 �� 1&� �����
�� ��Æ����� �� ��� ��
���� �/������ ����		�	 ��������� ����
���� ���� �� 1�	 8��7� �6�� ��	 �6,���/� ���� ���
�	�� �

�������� ����������� ��
�������� ��� ���	���� ��� ������
������ �� ��� ������������ ���������� ���� �/������ ���������
��������� ���	 �� � ��	� 
������ �� �������� 	�
�����

%� �		����� �� ��� ���� �������� ���������� ��� ��������
��	� ��� : ����������� ���� ��� �� ���	 �� ���� �����������
��	 �� 1��*93 ��������
��� ���� ���
�	�� � :4�� ��� ��
���������� 	��� ���������� �� �/��������� �� �� ���
�� �� �
������� �� ��� ��������������� ��� 1��*93 ���� ���� �������
��� ��������� �� ��	� ������ )�� �� (D ��	�� ��� �� 	�����
������	 ��������. ���� ���� �/������������� ��	 	��� ����
������� �� 
������ ��������� '�� ��	� �������� ��
���� �����
��
��� ��	�� ��	 �������� ����� ������� �������� ���� ���
������� ��� ����� ����������� �� ��� 	�<����� ���������
�� ��� ��	�� ��� ���� ����	 ���� ������� � �� ����������
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Abstract 
 

We present a low cost wireless microsensor node 
architecture for distributed computation and sensing in 
massively distributed embedded systems. Our design 
focuses on the development of a versatile, low power 
device to facilitate experimentation and initial 
deployment of wireless microsensor nodes in deeply 
embedded systems. This paper provides the details of our 
architecture and introduces fine-grained node 
localization as an example application of distributed 
computation and wireless embedded sensing. 
 
1. Introduction 
     The rapid advancements in embedded wireless devices 
have enabled a new set of interesting and diverse 
applications. One class of applications is wireless 
microsensor networks where small devices embedded in 
the environment coordinate with each other to perform 
unsupervised sensing and actuation. Typical tasks include 
condition-based maintenance in factories, monitoring 
remote ecosystems, endangered species, forest fires and 
disaster sites [9]. To complete their sensing tasks, in tiny 
wirelessly connected sensor nodes are required to form an 
ad-hoc network that can sense events, interpret the sensor 
readings and report the results to a remote control center. 
This paradigm creates a set of new multidisciplinary 
challenges that need to be addressed. First, new 
lightweight and energy efficient methods are required to 
enable nodes to self-organize and construct a network on 
the fly are required. Second, the different sensing 
modalities need to be well understood. Third, new 
mechanisms for the in-network processing of sensor data 
need to be developed to improve system latencies and 
help to conserve power by reducing communication. 
      In our efforts to develop robust wireless sensor 
networks that can operate without human supervision, we 
study the operation of sensor nodes under realistic 
deployment conditions by constructing a deeply 
embedded wireless microsensor system. As a vehicle to 
the exploration of such systems, we have developed the 
Medusa MK-2 node (Figure 1), a versatile, low cost, low 
power wireless sensing device. The goal of this device is 
to enable experimentation with different sensing 

technologies, assist with the development of new sensor 
network protocols and applications and to accommodate 
the first deployment phase of a deeply embedded sensing 
environment, the Smart Kindergarten [3].  In the context 
of our research, the Medusa MK-2 node is used to 
provide fine-grained node localization services in the 
Smart Kindergarten environment for studying group 
interaction problems, but can also provide a flexible 
platform for the study of a wide variety of applications. 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This paper presents the details of the Medusa MK-2 
design.  While our design focuses on producing a low 
cost low power distributed computation platform for 
wireless embedded sensing, great care is taken to attain 
the maximum flexibility for experimentation. The 
remainder of this paper is organized as follows. The next 
section provides an overview of some general sensor 
node requirements and introduces the MK-2 architecture.  
Section 3 provides a detailed description of the node 
subsystems. Section 4 discusses node localization as an 
example application, section 5 presents the related work 
and section 6 concludes the paper. 

Figure 1 The Medusa MK-2 node 
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2. Sensor Node Requirements 
 In typical sensor network scenarios, large 
numbers sensor nodes are expected to be deployed an ad-
hoc manner to monitor a set of events [9].  The design of 
such sensor nodes is driven by the following factors: 
• Size – In order to be unobtrusive to their 

environment these nodes should have a small form 
factor. 

• Cost – These devices are expected to be deployed in 
large number and be disposable. This implies that 
they should be manufactured with very low cost. 

• Power Efficiency – Since these devices are expected 
to be small, they should be able to operate over small 
batteries for prolonged time periods. To do so sensor 
nodes should use low power components and also try 
to make optimal use of the available energy 
resources. 

• Flexibility – To facilitate experimentation these 
devices should be very flexible in programmability 
and should have a rich set of hardware and software 
sensor interfaces to accommodate different sensing 
technologies. 

 
    Figure 2 depicts a typical sensor node architecture. The 
node consists of a power supply subsystem that contains a 
battery and a DC-DC converter, a processing unit which 
is usually made up of a low cost, low power 
microcontroller, some memory, a set of sensors and a low 
power radio for communicating with other nodes.  To 
optimize the operation of a sensor network made of such 
nodes all components attributing to the operation of the 
sensor node need to be closely studied and understood. 
 
2.1 Medusa MK-2 Overview 
 
To facilitate our research and experimentation in sensor 
networks we have developed the Medusa MK-2 wireless 
sensor node. Although the primary driver for the 
development of this node is the study of node localization 
problems, Medusa MK-2 is also a versatile device for 
testing different sensing solutions and for exploring a 
wide variety of new protocols and applications in sensor 
networks. 
 
 
 
 
 
 
 
 
 

 
Figure 2 depicts the Medusa MK-2 architecture.  The 
computation subsystem of the node consists of two 
microcontroller. The first one is an 8-bit 4MHz 
ATMega128L MCU [1] from Atmel. This has 32KB of 
flash and 4KB of RAM and it is used as an interface to 
the sensors and for radio baseband processing. The 
second one is a 16/32-bit AT91FR4081 ARM THUMB 
processor [2] also from Atmel. This is a more powerful 
processor based on an ARM7TDMI core running at 
40MHz. It has   136KB of RAM and 1MB of on-chip 
FLASH memory and comes in a compact 120-ball BGA 
package.  The communication subsystem is made up of a 
TR1000 low power radio from RF Monolithics [7] and an 
RS-485 serial bus transceiver for wireline 
communication.  The sensing subsystem is made up of a 
MEMs accelerometer (ADXL202E from Analog Devices) 
and a temperature sensor. The node also has a rich set of 
interfaces: 8 10-bit ADC inputs, serial ports (I2C, RS-232, 
RS-485, SPI) and numerous general purpose I/O (GPIO) 
ports.  An accessory board implements an ultrasonic 
ranging subsystem uses a set of 40KHz ultrasonic 
transducers (both transmitters and receivers). These are 
used in coordination with RF transmissions to measure 
inter-node distances for node localization.  In addition to 
the sensors, the node also has two pushbuttons that serve 
as a user interface. These are used to trigger events and to 
execute different tests during experimentation.  The node 
has two external connectors (see Figure 3). The first one 
has all the necessary connections for communicating with 
a PC to download and debug software. The wiring 
required for connecting the node to an external GPS 
module is also provided on this connector. The second 
connector has a set of ADC, GPIO and communication 
lines and it serves as an expansion slot for attaching add-
on boards carrying different sensors. The description of 
each of the node subsystems is provided in the next 
section. 
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3. Medusa MK-2 Components 
 
3.1 The Computation Subsystem 
To design the computation subsystem, we classified the 
node computation tasks into two broad categories; low 
demand and high demand low frequency, according to 
their computation needs. The fist class contains the 
periodic tasks that the sensor node has to make such as 
the base band processing for the radio while listening for 
new packets, sensor sampling, handling of sensor events 
and power management.  Although these tasks require a 
high degree of concurrency, they are not particularly 
demanding in terms of computation and can be easily 
handled an 8-bit microcontroller. The TinyOS [4] 
development effort at UC Berkeley has shown how such a 
task set can be supported by with a low power AVR 
microcontroller. The Medusa MK-2 architecture follows 
the same approach by dedicating an AVRMega128L 
microcontroller to handle these less computation 
demanding but highly concurrent tasks that a sensor node 
has to fulfill. 
    The second class of computation runs a set of 
algorithms that process acquired sensor data to produce a 
result or conclusion about what is being sensed. An 
example of such computation can be drawn from the fine-
grained localization problem described in [5]. In this 
situation, a sensor node is expected to compute an 
estimate of its location by using a set of distance 
measurements to known landmarks or beacons.  To solve 
this least squares estimation problem a node is required to 
perform a set of high precision matrix operations. This 
type of computation consumes between 3-4 MIPS [5] and 
has high accuracy requirements and it is more suitable for 
a higher end processor. Performing this computation on 
an 8-bit processor, would incur high latencies and less 
precision in the calculation due to round off errors. 
Instead the 32-bit instruction set and datapath provided by 
the 40MHz ARM THUMB processor is a more suitable 
environment for this type of computation. Furthermore, 
the THUMB microcontroller has sufficient resources to 
run some off the shelf embedded operating systems such 
as Red Hat eCos and uCLinux. This adds the additional 
advantage of allowing some of the existing applications 
and a rich set of libraries to run on the nodes. 
    This distribution of computation is also favorable from 
a power/latency perspective. The THUMB processor 
executes instructions at a rate of 0.9MIPS per MHz at 
40MHz while drawing 25mA with a 3V supply. This 
gives a performance of 480 MIPS/Watt. The 
ATMega128L on the other hand operates at 4MHz and 
draws 5mA at a 3V supply thus provides 242 MIPS/Watt. 
Table 1 shows the microcontroller parameters which 
result in this  power/latency tradeoff. 

 
 
 

Table 1 MCU Comparison 
 AT91FR4081 ATMega128L 
Datapath 16/32 Bit 8 bit 
Clock Speed (MHz) 40 4 
MIPS/MHz (ARM 0.9), 

(THUMB 0.7) 
1 

Power @ 3V(mW) 75 15 
MIPS/W 480 242 

    
    The two processors communicate with each other with 
a pair of interrupt lines, one for each microcontroller, and 
an SPI bus.   The microcontrollers use the interrupts as a 
mechanism for waking up each other from sleep mode 
when information exchange needs to take place.  
Information exchange takes place over SPI.  The SPI 
interface was selected because of its high-speed 
capabilities (above 1Mbps).  The SPI bus is included on 
connector 2 (see figure 3) so it can also support additional 
processors added to the node such as DSP processors or 
additional microcontrollers that are part of additional 
sensor boards. 
 
3.2 The Communication Subsystem 
 The communication subsystem consists of both a 
wired and a wireless link.  The wireless link is 
implemented with a low power TR1000 radio from RF 
Monolithics. This radio has a 0.75mW maximum transmit 
power and has an approximate transmission range of 20 
meters. Additionally the radio supports two different 
modulation schemes, On-Off Keying (OOK) and 
Amplitude Shift Keying (ASK). The selection of a 
modulation scheme can be done in software according to 
the application specification. The radio supports multiple 
data rates ranging from 2.4kbps to 115kbps. On the 
Medusa MK-2 node, the base band processing for the 
radio is done by the ATMega128L microcontroller.  This 
configuration allows running a lightweight medium 
access control (MAC) protocol on the ATMega128L 
processor. The S-MAC protocol presented in [12] is a low 
power MAC protocol for sensor networks that is well 
suited for this purpose. 
     In addition to the wireless front end, the Medusa MK-
2 node is also equipped with an RS-485 serial bus 
interface for wireline communication. A low power RS-
485 transceiver is attached to one of the RS-232 ports of 
the THUMB processor and allows the connecting the 
nodes to an RS-485 network using an RJ-11 connector 
and regular telephone wire. A single RS-485 network can 
have up to 32 nodes that can span over a total wire length 
distance of 1000 feet. Besides providing a wireless 
networking alternative in places with high interference 
where radios cannot function adequately this 
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configuration allows a wide variety of node 
configurations such as: 
• Array formations – several nodes, each one 

equipped with different sensors can be daisy chained 
to form node arrays.  

• Gateway functions – nodes can act as gateways, 
connecting other wireless nodes to the wired 
infrastructure. With the use of RS-485 several 
gateways can be attached to the same workstation. 

• Out-of-band data collection – during experiments 
where the data is processed on the nodes and 
communicated over wireless links, the raw data can 
also be collected using the wired infrastructure for 
offline analysis later on. 

 
3.3 The Power Subsystem 
The power subsystem consists of 2 main units: the power 
supply and the Power Management and Tracking Unit 
PMTU [10].  The power supply consists of a 540mAh 
lithium-ion rechargeable battery and an up-down DC-DC 
converter that has a 3.3V output and can source up to 
300mA of current from the battery. Although with no 
sensors attached, the node requires less than 50mA, the 
power supply designed to source up to 300mA currents to 
provide power-additional sensors than can be attached to 
the node as accessory boards.  Table 2 shows the average 
current drawn by the main node components1 during 
active and sleep node. According to the table, the 
maximum power consumption of the node is less than 
150mW.  During normal operation, the node consumes 
less power by putting the unused components in sleep 
mode. In a typical sensor network setting, the ARM 
THUMB processor together with the RS-485 and RS-232 
transceivers are in sleep mode most of the time resulting 
up to an 80% reduction of the overall node power 
consumption. 

Table 2 Current drawn by node components 
Component Active(mA) Sleep(mA) 
ATMega128L 5.5 1 
RFM 2.9 5 
AT91FR4081 25 10 
RS-485 3 1 
RS-232   3 10 
Total 39.4 27 

 
To get an indication of how the Medusa MK-2 power 
consumption relates to other sensor nodes, we compared 
its power consumption to the power consumption of a 
higher end node, the WINS node [8] developed at the 
Rockwell Science Center. This node is equipped with a 
more powerful StrongARM SA-1100 microprocessor 
from Intel, a 100-meter range 100Kbps radio from 
Connexant and several sensors. The results of the power 
                                                 
1 Numbers obtained from data sheets 

characterization of the WINS node at different 
operational modes are shown in table 3. Table 4 shows 
the same characterization for the Medusa MK-2 node. 
Based on this comparison, the power consumption of the 
Medusa MK-2 node when all subsystems are active is 
approximately 10 times less than the power consumption 
of the WINS node. Furthermore, by shutting down the 
THUMB processor on the Medusa MK-2 node when not 
in use can result in 44 times less power consumption than 
the WINS node. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another interesting observation noted in the power 
measurements is that the power consumption of the radio 
is almost the same regardless whether the radio is in 
receive transmit or idle mode.  This implies that no power 
is conserved when the radio is in idle state, so it is better 
to develop protocols that completely shutoff the radio 
when not in use, hence a media access control protocol 
like S-MAC is highly desirable. 
 
 
 
 
 
 
 
 
 
 
 
 
To further reduce power consumption, the Medusa MK-2 
node is equipped with a power Management/Tracking 
Unit (PMTU). This is a set of three DS2438 battery 
monitors from Dallas Semiconductor that keep track of 
the power consumed by the different node sub-systems. 
The first battery monitor keeps track of the power 
consumed by the AT91FR4081 processor, the second 
tracks the power consumed by the radio while the third 
monitors the overall node power consumption.  Using the 
PMTU information, the Medusa MK-2 node can 
implement power aware algorithms to maximize battery 

Table 3 Power Characterization of WINS node 

Table 4 Power characterization of Medusa MK-2 node
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lifetime.  By making this power consumption information 
available to the application level, applications can set up 
their own power aware policies and decide which parts of 
the node to shutdown in order to conserve energy while 
meeting their sensing, computation and communication 
requirements. 
 
4. An example application: Node Localization 
To illustrate the use of the Medusa MK-2 node as a 
distributed computation and sensing platform we use an 
instantiation of the multihop node localization problem 
described in [5]. In this problem, nodes with unknown 
locations (white nodes in Figure 4) are expected to 
estimate their locations by setting up and solving a global 
non-linear optimization problem. To solve this problem, 
nodes first “sense” their separation to their neighbors 
using the node’s ultrasonic ranging subsystem. When all 
the required measurements are made, the nodes with 
unknown positions combine these measurements with 
known location information of landmark nodes (black 
nodes in Figure 4) to estimate their locations using 
distributed collaborative multilateration. 
 
 
 
 
 
 
 
 
 
 
 
In this type of setup, the optimal position estimate is the 
one computed from a global vantage point that considers 
all the physical topology constraints. This however is a 
large non-linear optimization problem that computation 
and memory-constrained nodes cannot solve individually. 
With distributed collaborative multilateration nodes with 
unknown locations in setups similar to the one in figure 4 
are able to estimate their locations locally while taking 
global constraints into consideration. As it was shown in 
[5], using this fully distributed computation model, 
resource constrained MK-2 nodes with unknown position 
can collaborate with each other to estimate their physical 
positions, a task that none of the nodes can perform 
individually. 
 
5. Related Work 
Research efforts in the last few years have produced a 
wide variety of sensor nodes ranging from tiny sensor 
nodes promised by the Smart Dust project [6] to fully-

fledged nodes such as the WINS nodes [11] produced by 
Sensoria Corporation. The Smart Dust nodes still in 
development promise cubic millimeter scale form factor 
and a few cents per node manufacturing cost. The WINS 
nodes are already in use by the research community. They 
feature a Hitachi SH4 floating-point processor running 
linux and a long-range frequency hopping radio. 
Although these nodes are very powerful for some 
applications they are still large and power hungry and 
fairly expensive for some indoor applications and 
building large experimental networks in a lab setting.  
     UC Berkeley’s MICA nodes [13] are an example of 
lower cost nodes that is currently widely used within the 
research community. The MK-2 node shares many 
similarities with this node. It uses the same AVR 
microcontroller and radio, it can support similar sensors 
and it is interoperable with the Mica modes. MK-2 differs 
from the Mica motes in that it has additional processing 
power, larger power supply and a set of customized 
features and sensor interfaces geared towards 
experimentation, especially for node localization 
problems. 
 
8. Conclusions 
We have presented the Medusa MK-2 node, a wireless 
node for distributed computation and sensing. The main 
focus of our development is to produce a simple, low cost 
design that is easy to program and provides great 
flexibility for experimentation in many different settings.  
We believe that this node will provide an affordable 
solution for constructing reasonable sized testbeds that 
would help in the development and validation of new 
protocols and concepts in this new era of wireless 
embedded sensing.  
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Design and Implementation of a Framework for Efficient and 
Programmable Sensor Networks 

 

 
 
 

Abstract – Wireless ad hoc sensor networks have 
emerged as one of the key growth areas for wireless 
networking and computing technologies. So far these 
networks/systems have been designed with static and 
custom architectures for specific tasks, thus providing 
inflexible operation and interaction capabilities. Our 
vision is to create sensor networks that are open to 
multiple transient users with dynamic needs. Working 
towards this vision, we propose a framework to define 
and support lightweight and mobile control scripts that 
allow the computation, communication, and sensing 
resources at the sensor nodes to be efficiently harnessed 
in an application-specific fashion. The 
replication/migration of such scripts in several sensor 
nodes allows the dynamic deployment of distributed 
algorithms into the network. Our framework, 
SensorWare, defines, creates, dynamically deploys, and 
supports such scripts. Our implementation of 
SensorWare occupies less than 180Kbytes of code 
memory and thus easily fits into several sensor node 
platforms. Extensive delay measurements on our iPAQ-
based prototype sensor node platform reveal the small 
overhead of SensorWare to the algorithms (less than 
0.3msec in most high-level operations). In return the 
programmer of the sensor network receives 
compactness of code, abstraction services for all of the 
node’s modules, and in-built multi -user support. 
SensorWare with its features apart from making 
dynamic programming possible it also makes it easy 
and efficient without restricting the expressiveness of 
the algorithms. 

I. INTRODUCTION 

Wireless ad-hoc sensor networks (WASNs) have drawn 
a lot of attention in recent years from a diverse set of 
research communities. Researchers have been mostly 
concerned with exploring applications such as target 
tracking and distributed estimation, investigating new 
routing and access control protocols, proposing new 
energy-saving algorithmic techniques for these systems, 
and developing hardware prototypes of sensor nodes.  

Little concern has been given on how to actually 
program the WASN. Most of the time, it is assumed that 
the proposed algorithms are hard-coded into the memory 
of each node. In some platforms the application developer 
can use a node-level OS (e.g. TinyOS) to create the 
application, which has the advantages of modularity, multi-

tasking, and a hardware abstraction layer. Nevertheless the 
developer still has to create a single executable image to be 
downloaded manually into each node. However, it is 
widely accepted that WASNs will have long-deployment 
cycles and serve multiple transient users with dynamic 
needs. These two features clearly point in the direction of 
dynamic WASN programming. 

What kind of dynamic programmability do we want for 
WASNs? Having a few algorithms hard-coded into each 
node but tunable through the transmission of parameters, is 
not flexible enough for the wide variety of possible WASN 
applications. Having the ability to download executable 
images into the nodes is not feasible because most of the 
nodes will be physically unreachable or reachable at a very 
high cost. Having the ability to use the network in order to 
transfer the executable images to each and every node is 
energy inefficient (because of the high communication 
costs and limited node energy) and cannot allow the 
sharing of the WASN by multiple users. What we ideally 
want is to be able to dynamically program the WASN as a 
whole, an aggregate, not just as a mere collection of 
individual nodes. This means that a user, connected to the 
network at any point, will be able to inject instructions into 
the network to perform a given (possibly distributed) task. 
The instructions will task individual nodes according to 
user needs, network state, and physical phenomena, 
without any intervention from the user, other than the 
initial injection. Furthermore, since we want multiple users 
to use the WASN concurrently, several resources/services 
of the sensor node should be abstracted and made sharable 
by many users/applications. 

One approach of programming the WASN as an 
aggregate is a distributed database system (e.g., [1]). 
Multiple users can inject database-like queries to be 
autonomously distributed into the network. The WASN is 
viewed as a distributed database and the query's task is to 
retrieve the needed information by finding the right nodes 
and possibly aggregate the data as they are routed back to 
the user. This approach ignores though the fact that 
information is not always resident in nodes but sometimes 
has to be retrieved by custom collaboration  among a 
changing set of nodes (e.g., target tracking). Thus even 
though the database model is programming the network in 
the desirable way, it is not expressive enough to implement 
any distributed algorithm.  

The other approach to WASN programmability that is 
used by our framework, and is gaining momentum lately, 
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is the "active sensor" approach. This term was used in [19], 
to describe a family of frameworks that try to task sensor 
nodes in a custom fashion, much like active networking 
frameworks task data network nodes. The difference is that 
while active networking tasks are reacting only to 
reception of data packets, active sensor tasks need to react 
to many types of events, such as network events, sensing 
events, and timeouts. Active sensor frameworks abstract 
the run-time environment of the sensor node by installing a 
virtual machine or a high-level script interpreter at each 
node. For example, single instructions of the scripts (or 
bytecodes) can send packets, or read data from the sensing 
device. Moreover, the scripts (or bytecodes) are made 
mobile through special instructions, so nodes can 
autonomously task their peers. 

The difficulty in designing an active sensor framework 
is how to properly define the abstraction of the run-time 
environment so that one achieves compactness of code, 
sharability of resources for multi-user support, portability 
in many platforms, while at the same time keeping a low 
overhead in delays and energy. Our proposal of such a 
framework, called SensorWare, employs lightweight and 
mobile control scripts that are autonomously populated in 
sensor nodes after a triggering user injection. The sensor 
node abstraction was made in such a way so that multi-user 
accessibility is given to all of the node's modules (e.g., 
radio, sensing devices) while also creating other services 
(e.g., real-time timers). Considerable attention was given to 
the portability and expandability of the framework by 
allowing the definition of new modules. By choosing the 
right level of abstraction the scripts are compacted to 10s-
100s of bytes. For the non-trivial application examined in 
section V.A, the SensorWare script is smaller than the code 
of other frameworks with comparable capabilities in 
algorithm expressiveness (e.g. other active sensors scripts, 
binary images).  

Our implementation and porting of SensorWare in 
several sensor node platforms shows that the size of the 
framework is small enough (<180Kbytes) to fit in most 
current sensor node designs. Moreover, extensive 
measurements in our prototype iPAQ-based sensor node 
platform reveal the delay and energy overheads of 
SensorWare. Every SensorWare script command has a 
delay less than 0.3msec showing the limits of real-time 
operation. Note that the script commands have a high-level 
of abstraction (i.e., each command performs  multiple low-
level operations). Experiments with both compiled and 
interpreted versions of the scripts are conducted in order to 
explore the energy trade-off space between different 
representations of an algorithm.  

Section II discusses in depth the nature of WASNs, 
approaches to WASN programmability, and the general 
idea of our approach. Section III presents related work. 
Section IV presents SensorWare's architecture. Section V 
illustrates how is SensorWare ported to a platform and 
explains a moderately large script solving a real problem. 
Section VI presents our current implementation and the 

measurements we acquired through it. Finally, section VII 
concludes the paper. 

II. MOTIVATION AND BACKGROUND 

A.   Wireless Ad hoc Sensor Networks  

Figure 1 shows an example of a WASN, highlighting 
its main characteristics. An ad hoc network of miniature, 
resource-limited, static, wireless, sensor nodes is being 
used to monitor a dynamic physical environment. The use 
of low power communication and the need for diversity in 
sensing necessitates a multi-hop, distributed architecture 
[22]. The computation capabilities at the nodes can be 
leveraged for event detection via data fusion and 
collaborative signal processing among nearby nodes, so 
that higher bandwidth raw sensor data does not need to be 
sent to the users. Typically a user queries the network 
(consider the term “query” in the broad sense, not just 
database query), the query triggers some reaction from the 
network, and as the result of this reaction the user receives 
the information needed. The reaction to the query can vary 
from a simple return of a sensor value, to a complex 
unfolding of a distributed algorithm among some or all of 
the sensor nodes, such as a collaborative signal processing 
algorithm or a distributed estimation algorithm. 
Furthermore, there are multiple users who are transiently 
connected to the network, each having different needs in 
requested information. The WASN is there to 
accommodate all or most of their needs. 

Figure 1: Wireless Ad-hoc Sensor Network 

These systems are quite different from traditional 
networks. First, they have severe energy, computation, 
storage, and bandwidth constraints. Second, their overall 
usage scenario and the implications that this brings to the 
traffic and the interaction with the users is quite different 
from traditional networks. There is not a mere exchange of 
data between users and nodes. The user will rarely be 
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interested in the readings of one or two specific nodes. The 
user will be interested in some parameters of a dynamic 
physical process. To efficiently achieve this, the nodes 
have to form an application-specific distributed system to 
provide the user with the answer. Moreover, the nodes that 
are involved in the process of providing the user with 
information are constantly changing as the physical 
phenomenon is changing. Therefore the user interacts with 
the system as a whole. The WASN is not there to connect 
different parties together as in the traditional networking 
sense but to provide information services to users. 

As a consequence efficiently designed WASNs operate 
in a fashion where a node's actions are affected largely by 
physical stimuli detected by the node itself or nearby 
nodes. Frequent long trips to the user are undesirable 
because they are time and energy consuming. This 
decentralized (i.e. not all traffic flows to/from user), 
autonomous (i.e., user out-of-the-loop most of the time) 
way of operating, is called “proactive computing” (as 
opposed to interactive) by David Tennenhouse [27]. We 
also adopt the term “proactive” throughout the paper to 
denote an autonomous and non-interactive nature.  

Efficiently designed WASNs are application-specific 
distributed systems that require a different distributed 
proactive algorithm as an efficient solution to each 
different application problem. Given the nature of SNs, 
one can coarsely define two classes of problems in their 
design. First, the application-specific problem: How does 
one find the most efficient distributed algorithm for a 
particular problem? Second, the generic problem: How 
does one dynamically deploy different algorithms into the 
network, what is the programming model that will 
implement these algorithms, and what general support does 
one need from the framework? 

For the first class of problems (i.e., finding efficient 
algorithms for particular applications), there are many 
research efforts in a variety of application problems (e.g., 
target tracking, sensor reading aggregation). In this paper 
we will not expand into any particular application problem. 
We only note, that in general, localized distributed 
algorithms (i.e., distributed algorithms that act locally, 
using only local information) are particularly efficient in 
most WASN problems as they achieve small and well-
distributed energy consumption, thus prolonging the 
network lifetime.  

The second class of problems (i.e., what is the right 
framework to express and dynamically deploy distributed 
algorithms for WASNs) is the focus in this paper. We 
describe our proposal of such a framework, called 
SensorWare. SensorWare provides a language model 
powerful enough to express the most efficient distributed 
algorithms while at the same time hiding unnecessary low-
level details from the application programmer and 
providing a way to share the resources of a node among 
many applications and users that might concurrently use 
the WASN. The language model is developed after 

examining what are the properties of efficient algorithms 
for SN (e.g., localized distributed algorithms), and in 
conjunction with developing our own applications on real 
sensor networks [3]. 

Equally important is the role of SensorWare in the 
dynamic deployment of the distributed algorithms into the 
network. As sensor nodes are memory -constrained, they 
cannot store every possible application in their local 
memory. Thus, a way of dynamically deploying a new 
application is needed.  Usually this means that a distributed 
algorithm has to be incorporated in several sensor nodes, 
which in turn means that these sensor nodes have to be 
dynamically programmed. A user-friendly and energy-
efficient way of programming the nodes keeps the user 
out-of-the-loop most of the time by allowing sensor nodes 
to program their peers. By doing so, the user does not have 
to worry about the specifics of the distributed algorithm 
(because the information on how the algorithm unfolds lies 
within the algorithm), and the nodes save communication 
energy (because they interact with their immediate 
neighbors and not with the user node through multi-hop 
routes). The programming model of SensorWare is 
designed in such a way, so as to facilitate the user-friendly 
and energy-efficient dynamic deployment of an algorithm. 
The user "injects" the query/program into the network, and 
the query autonomously unfolds the distributed algorithm 
into the nodes that should be affected.  

B.   Approaches to WASN programmability 

As discussed in the introduction, one of the approaches 
currently under investigation is a distributed database 
model.  A good example of this approach is the work done 
at Cornell [1]. A similar scheme called DataSpace focusing 
on location addressing has also been developed in Rutgers 
[14]. Each node is equipped with a fixed database query 
resolver. As queries arrive to a node, the local resolver 
decides on the best, distributed plan to execute the query 
and distributes the query to the appropriate nodes. 
Although this approach takes into account the distributed 
nature of the system and works well in several scenarios, it 
does not take into account the proactive nature of the 
system. The user is the central place of control and most 
data flows to/from the user. This property can prove 
inefficient in applications such as target tracking, where it 
is better for nodes to form clusters around the target, 
collaboratively compute the target's location and just send 
the location information back to the user. Clearly a more 
flexible way of programming the sensor network is needed 
to enable this kind of behavior. 

C.   SensorWare 

The SensorWare architecture is based on a scriptable 
lightweight run-time environment, optimized for sensor 
nodes that have limited energy and memory. This 
environment securely hosts one or more simple, compact, 
and platform-independent sensor-node control scripts. The 
sensing, communication, and signal-processing resources 
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of a node are exposed to the control scripts that orchestrate 
the dataflow to assemble custom protocol and signal 
processing stacks. SensorWare has to also promote the 
creation of distributed proactive algorithms based on the 
scripting language described above. For this reason the 
scripts are made mobile using special language commands 
and directives. A script can replicate or migrate its code 
and data to other nodes, directly affecting their behavior. 
The replication or migration of a script will be called 
“population” in the paper. 

A usage scenario can be like the following: A user 
sends a query to the sensor network. The query is a script, 
a state machine in its simplest form, which is injected to 
one or more sensor nodes. The script will describe among 
other things how it is going to populate itself to other 
nodes. The process of population can continue depending 
on events and the current state. For example as the events 
of interest are moving to a different area, the scripts can 
move along with them, possibly trying to predict their next 
move. The populated scripts will collaborate among 
themselves in order to extract the information needed by 
the user, and when this information is acquired it is sent 
back to the user. 

III. RELATED WORK 

SensorWare falls under the family of active sensor 
frameworks. Its closest relatives in the traditional networks 
realm are Mobile Agent frameworks. Other active 
networking frameworks exhibit similarities, such as the 
scripting abstraction. In this section we only consider work 
that tries to make WASNs programmable using active 
sensor concepts. Therefore, general mobile -agent and 
active-network platforms are not discussed, nor any 
distributed database systems for WASNs are presented.  
The interested reader can refer to [2] for a comprehensive 
comparison of SensorWare with mobile agent platforms, as 
well as with an active networking framework called PLAN 
[10]. 

An active sensor framework for WASNs is currently 
being developed in Berkeley under the name Maté. Maté 
[19] is a tiny virtual machine build on top of TinyOS [12]. 
TinyOS is an operating system, designed specifically for 
the Berkeley-designed family of sensor nodes, generically 
named "motes" [11][12]. Maté's goal is to make a WASN 
made of motes dynamically programmable in an efficient 
manner. This includes the capability to dynamically 
instruct a mote to execute any program, and expressing this 
program in a concise way. They achieve this by building a 
virtual machine (VM) for the motes. The virtual machine 
supports a very simple, assembly-like language, to be used 
for all needs of mote-tasking. Programs (called capsules) 
written on the VM language can be injected to any node 
and perform a task. Furthermore the capsules have the 
ability to self-transfer themselves by using special 
language commands. This model seems extremely like our 
own in SensorWare. Indeed, Maté shares the same goals as 

SensorWare as well as the same basic principles to achieve 
these goals. Differences appear though when one looks 
thoroughly into each platform's implementation. 

Maté, like its substrate TinyOS, was built with a 
specific platform in mind: the extremely resource-limited 
mote. The main restriction for the developer of mote-
targeted frameworks (such as an OS or a VM) is memory. 
The newest version of a mote called mica offers 128Kbytes 
of program memory and 4Kbytes of RAM. An older 
version called rene2 has 16Kbytes of program memory and 
1Kbyte of RAM. Maté, with an ingenious architecture, 
supports both platforms. Being so memory constrained, 
Maté has to sacrifice some features that would make 
programming easier and more efficient. First, a stack-based 
architecture with an ultra-compact instruction set (all 
instructions are 1 byte) is adopted which is reminiscent of 
a low-level assembly language or the byte code of the Java 
VM. This kind of model makes programming of even 
medium-sized tasks difficult. Furthermore, due to the ultra -
compact instruction set, many 1-byte instructions are 
needed to express a medium complexity algorithm, which 
in turn leads to large programs, compared to a higher-level, 
more abstracted scripting language. The size of programs 
is important since the code is transmitted/received using 
the radios of the nodes spending energy for every 
transmitted/received bit. Second, the behavior of a program 
when radio packets are received is rather rigid. A handler 
to process such events is essentially stateless in Maté. 
Thus, if a new pattern of packet processing is needed, a 
new handler has to be transferred through the network. 
This imposes an overhead in energy consumption and 
execution time. Third, because there is only one context 
(i.e., handler) per event (e.g., clock tick, reception of 
packet) multiple applications cannot run concurrently in 
one mote. 

SensorWare cannot fit in the restricted memory of a 
mote. SensorWare targets richer platforms that we believe 
are going to be the mainstream in sensor node design in the 
immediate future. Such platforms (e.g., [24]) include a 
1Mbyte of program memory and 128Kbytes of RAM. 
Having the luxury of more memory, SensorWare supports 
easy programming with a high-level scripting language, as 
well as concurrent multi-tasking of a node so that multiple 
applications can concurrently execute in a WASN. The 
programming model and properties of SensorWare are 
extensively discussed in section IV. 

Particularly instructive is to study the relationship 
between SensorWare’s mobile scripting approach and the 
mobile code approach in Penn State’s Reactive Sensor 
Network [23] (RSN) project under DARPA’s SenseIT 
program [25]. RSN’s focus is on providing an architecture 
whereby sensor nodes can: (i) download executables and 
DLLs, identified by URLs, from repositories or their 
cache, (ii) execute the program at the local node using 
input data which itself may be remotely located and 
identified by a URL, and (iii) write the data to a possibly 
remote URL. The RSN model is in essence Java’s applet 
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model generalized to arbitrary executables and data, and 
combined with a lookup service. The focus of RSN is quite 
different from SensorWare. Differences include: (i) RSN 
provides a general lookup and download service, (ii) RSN 
does not seek to provide a scripting environment with an 
associated sensor node resource model for use by scripts, 
and (iii) RSN’s notion of mobility is download oriented, as 
opposed to SensorWare’s approach of a script which can 
autonomously spawn scripts to remote nodes. RSN views 
sensor nodes as network switches with dynamically 
adaptable protocols, trying to directly map the motivation 
and methods of classical active networks into sensor 
networks. Unfortunately such an approach does not 
address the basic problems of sensor networks. Although 
one might be able to construct some distributed 
applications using the above scheme, by no means the 
creation and diffusion of distributed proactive applications 
into the network is supported by its architecture. 

Finally, extremely relevant is the work that is being 
conducted in University of Delaware by Jaikaeo et al. [16] 
called SQTL (Sensor Querying and Tasking Language). 
Having the same goals as our research, but starting from a 
different point (database-like queries), the researchers end 
up with the same basic solution as SensorWare, namely a 
tasking language for sensor networks. To lively 
demonstrate the relevance to our work we are quoting an 
excerpt from [16].”We model a sensor network as a set of 
collaborating nodes that carry out querying and tasking 
programmed in SQTL. A frontend node injects a message, 
that encapsulates an SQTL program, into a sensor node 
and starts a diffusion computation. A sensor node may 
diffuse the encapsulated SQTL program to other nodes as 
dictated by its logic and collaboratively perform the 
specified querying or tasking activity.”  

SQTL fits in a more general architecture for sensor 
networks called SINA (Sensor Information Networking 
Architecture) [26]. SINA uses both SQL-like queries as 
well as SQTL programs. Some of its main features include: 
1) hierarchical clustering, 2) attribute-based naming, 3) a 
spreadsheet paradigm for organizing sensor data in the 
nodes. SQL-like queries use these three features to execute 
simple querying and monitoring tasks. When a more 
advanced operation is needed though, SQTL plays the 
essential role by programming (or “tasking” as the 
researchers from Delaware call it) the sensor nodes and 
allowing proactive population of the program. In SINA, 
SQTL is used as an enhancement of simple SQL-like 
queries. The framework is there mainly to support the 
queries not the mobile scripts. As a consequence, SQTL 
scripts do not have all the provisions that SensorWare 
scripts have. The most important of them are: 1) Rich 
sensor-node-related APIs (e.g. for networking, sensing). 2) 
Diverse rules for mobility. A SQTL script can only specify 
the nodes to be populated. SensorWare first checks if the 
script is already in the remote node and offers a multitude 
of possibilities depending on how many instances of the 
script are already running in the remote node. 3) Code 

modularity in order to share functionality and avoid 
redundant code transfers 4) Support for multi-user scripts. 
5) Resource management in the presence of multiple 
scripts running in the node. 

IV. ARCHITECTURE 

First, we show SensorWare's place inside the overall 
sensor node's architecture (Figure 2). The architecture of a 
sensor node can be viewed in layers. The lower layers are 
the raw hardware and the hardware abstraction layer (i.e., 
the device drivers). An operating system (OS) is on top of 
the lower layers. The OS provides all the standard 
functions and services of a multi-threaded environment 
that are needed by the layers above it. The SensorWare 
layer for instance, uses those functions and services offered 
by the OS to provide the run-t ime environment for the 
control scripts. The control scripts rely completely on the 
SensorWare layer while populating around the network. 
Static applications and services coexist with mobile scripts. 
They can use some of the functionality of SensorWare as 
well as standard functions and services of the OS. These 
applications can be solutions to generic sensor node 
problems (e.g., location discovery), and can be distributed 
but not mobile. They will be part of the node's firmware. 

Figure 2: The general sensor node architecture 

Two things comprise SensorWare: 1) the language, and 
2) the supporting run-time environment. The next two 
subsections describe each of the parts in detail. A third 
subsection discusses issues of portability and 
expandability, and presents the final SensorWare code 
structure.  

A.   The language 

As discussed earlier, the basic idea is to make the nodes 
programmable through mobile control scripts. Here the 
basic parts that comprise the language will be described as 
well as the programming model that emerges from the 
parts. 
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First, a scripting language needs proper 
functions/commands to be defined and implemented in 
order to use them as building blocks (i.e., these will be the 
basic commands of the scripts). Each of these commands 
will abstract a specific task of the sensor node, such as 
communication with other nodes, or acquisition of sensing 
data. These commands can also introduce needed 
functionality like moving a script to another node or 
filtering the sensing data through a filter implemented in 
native code. Second, a scripting language needs constructs 
in order to tie these building blocks together in control 
scripts. Some examples include: constructs for flow 
control, like loops and conditional statements, constructs 
for variable handling and constructs for expression 
evaluation. We call all these constructs the "glue core" of 
the language, as they combine several of the basic building 
blocks to make actual control scripts.  

Figure 3 illustrates the different parts of the 
SensorWare language. Several of the basic 
commands/functions are grouped in theme-related APIs. 
We use the term API in a generic fashion, to denote a 
collection of theme-related functions that provide a 
programming interface to a resource or a service. As the 
figure hints, there is a question on what happens when we 
are dealing with different sensor node platforms that may 
support different/additional kinds of modules. Do we allow 
the set of APIs to be expandable? If so, who has the 
authority to name and define new commands? We will 
return to this topic with a solution in subsection C.     

Figure 3: The language parts in SensorWare 

As a glue core we can use the core from one of the 
scripting languages that are freely available, so we are not 
burdened with the task of building and verifying a core. 
One such scripting language, that is well suited for 
SensorWare's purposes, is Tcl [20], offering great 
modularity and portability. Thus, the Tcl core is used as 
the glue core in the SensorWare language. All the basic 
commands, such as wait, or the ones included in the 
APIs, are defined as new Tcl commands using the standard 
method that Tcl provides for that purpose.  

The set of APIs is basically a way of easily exporting 
services and shared resources to the scripts. For example, 

the Timer API defines and sets/resets real time timers, 
while the Mobility API provides the basic functions to the 
scripts so they can transfer themselves around the network.  

A.1 The general programing model 

As discussed earlier, according to the proactive 
distributed model the scripts will look mostly like state 
machines that are influenced by external events. Such 
events include network messages from peers, sensing data, 
and expiration of timers. The programming model that is 
adopted is equivalent to the following: An event is 
described, and it is tied with the definition of an event 
handler. The event handler, according to the current state, 
will do some (light) processing and possibly create some 
new events or/and alter the current state. Figure 4 
illustrates SensorWare's programming model with an 
example. 

Figure 4: The programming model 

The behavior described above is achieved through the 
wait command. Using this command, the programmer 
can define all the events that the script is waiting upon, at a 
given time. Examples of events that a script can wait upon 
are: i) reception of a message of a given format, ii) 
traversal of a threshold for a given sensing device reading, 
iii) filling of a buffer with sensing data of a given sampling 
rate, iv) expiration of several timers. When one of the 
events declared in the wait command occurs, the 
command terminates, returning the event that caused the 
termination. The code after the wait command processes 
the return value and invokes the code that implements the 
proper event handler. After the execution of the event 
handler, the script moves to a new wait command, or 
more usually it loops around and waits for events from the 
same wait command. 
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B.   The run-time environment 

As important are the scripts in the SensorWare 
platform, equally important is the run-time environment 
that supports them. Figure 5 illustrates the basic tasks 
performed by the environment. We separate tasks into 
fixed and platform-specific. The fixed tasks are always 
included in a SensorWare implementation, while the 
platform-specific depend on the existence of specific 
modules and services in the node platform. Again, the 
problem of expandability and portability appears. Do we 
allow any developer to arbitrarily define and create any 
tasks, according to the specific needs of each platform? 
Subsection C addresses this question. 

Figure 5: Tasks in the SensorWare run-time 
environment 

The Script Manager is the task that accepts all requests 
for the spawning of new scripts. It forwa rds the request to 
the Admission Control task and upon receiving a positive 
reply, it initiates a new thread/task running a script 
interpreter for the new script. The Script Manager also 
keeps any script-related state such as script-data for as long 
as the script is active. Possible attacks, such as snooping or 
spoofing, are banned by the strict security model. The 
script manager also keeps a script-code cache in order to 
reduce code transmissions over the wireless channel. The 
Admission Control and Policing of Resource Usage task, 
as the name reveals, takes all the script admission 
decisions, makes sure that the scripts stay under their 
resource contract, and most importantly checks the overall 
energy consumption. If the overall consumption exhibits 
alarming characteristics (e.g., the current rate cannot 
support all scripts to completion) the task selectively 
terminates some scripts according to certain SensorWare 
policies. Resource management and the security model are 
not discussed in this paper. The interested reader can refer 
to [2]. 

The run-time environment also includes "Resource 
Abstraction and Resource Metering" tasks (sometimes 
referred to as "Resources Handling" tasks for brevity). 

Each task supports the commands of the corresponding 
APIs and manages a specific resource. There are two fixed 
tasks in this category since every platform is assumed to 
have at least one radio and a timer service. The “Radio” 
task manages the radio: i) it accepts requests from the 
scripts about the format of network messages that they 
expect, i) it accepts all network messages and dispenses 
them to the appropriate scripts according to their needs, 
and finally iii) measures the radio utilization for each 
script, a quantity that is needed by the “Admission Control 
& Policing of Resource Usage” task. The second fixed 
task, the "Timer service", accepts the various requests for 
timers by all the scripts and manages to service them using 
a real-time timer the embedded system provides. In 
essence the tas k provides many virtual timers relying on 
one timer provided by the system. According to platform 
capabilities a specific porting of SensorWare may run 
additional tasks For instance, a “Sensor Abstraction” task 
manages a sensing device. It accepts all requests for sensor 
data from all the scripts and decides on the optimal way to 
control the sensing device (e.g., setting the A/D sampling 
rate). It also measures the sensing device utilization for 
each script. Figure 6 depicts an abstracted view of 
SensorWare's run-time environment for an example 
platform with one sensing device. 

Figure 6: Abstracted view of SensorWare's run-time 
environment for an example platform 
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arrives it is promptly processed. Then the next message 
will be fetched, or if the queue is empty, the thread "pends" 
again on the queue. A queue associated with a script thread 
is receiving events (e.g., reception of network messages, 
sensing data, or expiration of timers). A queue associated 
with one of the resource handling tasks, receives events of 
one type (from the specific device driver that is connected 
to), as well as messages that declare interest in this event 
type. For instance, the Sensing resource-handling task is 
receiving sensing data from the device driver and interests 
on sensing data from the scripts. The Script Manager 
queue receives messages from the network that wish to 
spawn a new script. There are also system messages that 
are exchanged between the system threads (like the ones 
that provide the Admission Control thread with resource 
metering information, or the ones that control the device 
drivers). 

C.   Portability and expandability of SensorWare 

In the previous subsections the problem of platform 
variability was revealed. Here we will present a solution 
for SensorWare's code structure. There are two kinds of 
platform variability: 1) capabilities variability (i.e. having 
different modules, such as sensing devices, GPS), 2) 
HW/SW variability (i.e. although the capabilities are the 
same we have different OS and/or specifics of hardware 
devices). We will explore solutions for each kind in two 
different subsections.  

C.1 Capabilities variability 

Different platforms may have different capabilities. For 
instance, imagine that one platform A has a radio and a 
magnetometer, while another platform B has two radios (a 
normal and a paging one) and a camera. How will we 
abstract the two platforms with the same framework? Since 
SensorWare's building blocks are the interface to the 
abstracted modules/services, we can allow an expandable 
API. Further, most modules/services will need a supporting 
task (as described in subsection B), so we can allow the 
definition and addition of arbitrary tasks in SensorWare's 
run-time environment. This kind of solution would create 
severe problems in the manageability of the code by 
different developers. SensorWare advocates a more 
modular and well-structured solution. SensorWare 
declares, defines, and support virtual devices (an idea 
triggered by Linux's virtual devices). Any module or 
service is represented as a virtual device. For example a 
radio, a sensing device, the timer service, a location 
discovery protocol are all view as virtual devices.  

There is a fixed interface for all devices. More 
specifically there are four commands that are used to 
communicate with the device.  They are: query, act , 
createEventID, and disposeEventID. Query 
asks for a piece of information from the device and expects 
an immediate reply. Act instructs the device to perform 
an action (e.g., modify some parameters of the device, or if 
the device is an actuator perform an action). 

CreateEventID describes a specific event that this 
device can produce and gives this event a name/ID. The 
name can be used subsequently from the wait command 
to wait on this specific event. DisposeEventID just 
disposes that name. Additionally, if a device can produce 
events, a task is needed to accept create/disposeEventID 
commands and react to wait commands that are waiting on 
the device's events. The task definition, and the parsing of 
the arguments of the four commands are defined in a 
custom fashion by the developer. This is where the 
expandability stems from, while at the same time keeping a 
structured form.  

C.2 HW/SW variability 

Even though two platforms may have the same 
capabilities (i.e., the same modules/services), they may 
rely on different hardware and/or operating system. In 
order to facilitate the porting process it is desirable to 
clearly separate the OS and HW-specific code from the 
fixed code and the capabilities-definition code. To achieve 
this we need to identify the dependencies of the code to the 
OS and the hardware and create abstracted wrapper 
functions. The wrapper functions are actually defined in 
separate sections of the code (i.e., different .c files) so that 
the developer can easily identify the points of change for a 
porting procedure.  

From the OS we need support to create and initiate 
threads/tasks, and support to define, post, and pend into 
mailboxes/queues. Thus we create wrapper functions for 
these operations. We also need low-level functions to 
access the hardware, thus we create wrapper functions 
around them (these functions will depend on the specific 
capabilities the platform supports). Figure 7 illustrates 
SensorWare's code structure. 

Figure 7:SensorWare code structure 
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V. CODE EXAMPLES 

In order to make SensorWare more concrete, we will 
present code examples and porting details in the next two 
subsections. The first one involves the creation of a 
specific application using the SensorWare script language. 
The second example, present details on how to port 
SensorWare in a specific platform. More specifically, we 
will show how to define new devices and how to connect 
the framework with the existing OS and hardware.  

A.   Script example 

In this subsection we will present the code for the 
snapshot aggregation application with multiple (static) 
users support. The specific problem that we are solving is 
to find the global maximum among current sensor node 
readings and report it back to the user. Furthermore, 
multiple users may request this maximum while the 
algorithm is running (i.e., time to populate the script into 
the network, collect and aggregate data towards the user). 
The users are accommodated with the minimum traffic, 
without the need to launch a different application/script for 
each user. Finding the minimum, average, or any other 
aggregation function, among different kinds of sensor node 
readings or state, can be easily achieved by trivial 
modification in our script. More on aggregation 
applications in general can be found in [3] and [4]. 

Before proceeding with the script code, it is beneficial 
to describe the internal workings of two Sensorware 
commands, namely "replicate" and "wait". 
Replicate (possibly) transfers the script that it was 
called from, to other node(s). It does not blindly pack and 
transmit the code and state of the script like all other active 
sensor approaches currently do. Replicate first starts 
with a transmission of "intention to replicate" message, 
carrying the name of the script and the issuing user. If the 
same script already exits in the other node(s) 
replicate, according to options, may choose not to 
transfer the code, may choose to initiate a second script of 
the same type in the node, or if the script has multi-user 
support, send an "add user" message. By default, 
replicate will send the "intention to replicate" message 
to avoid unnecessary code transfers, and will spawn a 
second script only if the requesting user is different by the 
existing one. Furthermore, it is assumed by default that the 
parent of the script (i.e., the node that spawned the script to 
the current node) already has the code for the script, thus 
does not need an "intention to replicate" message. The 
arguments of the replicate command are:  

replicate [ -[f] [d] [p] [m] [rc] [rs] [ru] ] [node_list]    
[ ] means optional 
f : forced replicate, no  "intention to replicate" message sent 
d: duplication of script at remote node irrespective of user 
p: parent not assumed to have script in memory 
m: script supports multi-users. Do not spawn new script in remote    

node, instead send "add user" message to existing script  

rc: return nodes that code was transferred 
rs: return nodes that spawned new script 
ru: return nodes "add user" message was sent 
by default option rsru is in effect. 
node_list: nodes to replicate. Leaving this field empty implies a 
broadcast to neighbors. Parent is excluded unless p is chosen. 
 

It is also useful to reveal some of the details of the 
wait command. Wait returns when an event named in 
the command's arguments occurs. In order to expedite 
processing of the event by the subsequent scrip code, the 
wait command sets the following predefined variables: 

event_name  :   the name of the occurred event. It indicates the 
device that caused the event and the type of the event 
event_data: data returned by the event 
If the event is a packet reception the following are defined and 
set:  msg_sender, msg_body 
 
 

 Listing 1 shows the actual SensorWare script. 
SensorWare commands and reserved words are in 
boldface. Variable names are in italics. Reserved variable 
name are in boldface and italics. Basic Tcl knowledge is 
needed to follow the script, although we do explain most of 
the code step by step. The example is sufficient to illustrate 
the programming style and the use of some of the most 
important commands, while solving a real problem. 

set need_reply_from [ replicate -m] 
set maxvalue [ query sensor value ]  
if {$need_reply_from == ""} { send $parent $maxtemp; exit } 
else { set return_reply_to $parent } 
set first_time 1 
while {1} { 
        wait anyRadioPck  // "anyRadioPck" is a predefined eventID 
        if { $msg_body ==add_user } { 
         if { $first_time == 1 } { 
  send $parent $msg_body 
  set first_time 0 
 } 
 set return_reply_to "$return_reply_to $msg_sender" 
        }else {  

set maxvalue [expr {($maxvalue< $msg_body) ? $maxvalue 
: $ msg_body }] 

set n [lsearch  $need_reply_from $ msg_sender] 
set need_reply_from [lreplace $need_reply_from $n $n] 

        } 
        foreach node $return_reply_to { 
 if { ($need_reply_from=="")||($need_reply_from==$node)} { 
  send $node $maxvalue 
  set n [lsearch  $return_reply_to $node] 
              set return_reply_to [lreplace $return_reply_to $n $n] 
 } 
        } 
        if {$return_reply_to==""} {exit} 
} 

Listing 1: Multi-user aggregation code 

The specific script keeps two important variables at 
each node: a list of nodes that replies are needed from, and 
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a list of nodes that replies are due. The first command tries 
to replicate the script to all the neighbors (except the 
parent), declaring that this is a multi-user script. The nodes 
that the script was spawned or an "add user" message was 
sent are returned and added to the need_reply_from 
variable. The second command reads the current value 
from the sensing device and sets the maxvalue variable 
with it. If there are no nodes to return a reply the script 
sends the maxvalue to the parent node and exits. Otherwise 
the parent node is added to the list return_reply_to and the 
big loop begins. Each time a packet is received we check if 
it is a data reply or an "add user" message and modify our 
lists and maxvalue accordingly. To graphically see how 
this algorithm works, refer to [4]. 

The script is its raw form is 882 bytes. If reserved 
words and variable names are compressed, the script 
becomes 277 bytes. If furthermore, we compress this 
intermediate form with gzip, we end up with 209 bytes. 
This is a compact description for this non-trivial algorithm. 
An equivalent SQTL script has a size in the order of 1000 
bytes (based on the simpler algorithm of aggregation for a 
single user and without replication checking). Building the 
same algorithm in Maté was proven impossible due to its 
limited heap and stack sizes. There was not enough space 
to hold the need_reply_from and return_reply_to lists. 
Even with a larger memory space though, Maté's stack 
based architecture and lack of higher-level services results 
in code of many instructions even for simple tasks. As 
stated earlier, Maté's restrictions are a design choice, 
coming from the desire to support the restrictive 
underlying platform. Finally, C code is written for this 
algorithm, with ext ernal references to SensorWare 
functions. The compiled native code has a size of 764 
bytes (without including the size of SensorWare functions 
called from within the native code). 

B.   Porting SensorWare to a platform 
In this subsection we will present some of the issues 

while porting SensorWare to a platform. We consider our 
iPAQ-based prototype as the testbed. A full description of 
the platform can be found in section VI.A. Here it is 
sufficient to know that the node has one radio and one 
sensing device, and that the underlying OS is Linux.  

First, we should add the proper capabilities to 
SensorWare by creating a virtual device for the sensing 
device (the radio has a virtual device by default). This 
means name and register the device by calling the function: 

create_device(char* name, int (*query)(), int (*act)(), void* 
(*createEventID)(), int (*disposeEventID)(), void* (*task)() ) 

As it can be seen by the declaration of the 
create_device function we need to define the four functions 
to parse the arguments of the four standard interface 
commands, plus a function to be executed by the thread/ 
task of the device. Not going any further into the definition 
of these functions, we are sufficed to say that they are very 
similar to the radio device functions. 

The next  step is to define the OS-specific code. More 
precisely, have the ability to create threads and use 
mailboxes/queues. For the definition and creation of 
threads we use the pthreads (i.e., posix threads) provided 
by Linux. Even though mailboxes are available in Linux, 
we chose to construct our own structures using 
semaphores. Finally, the hardware -specific code is directly 
provided by the Linux's device drivers. 

VI. IMPLEMENTATION 

Some active sensor frameworks choose to evaluate 
their performance by showing their expressiveness. They 
create a distributed algorithm for a particular application 
and compare it against a more centralized approach 
(usually a distributed database approach). We believe that 
the energy savings from such comparisons are evident for 
any active sensor framework and do not add value to the 
investigation and evaluation of the framework.  To 
evaluate SensorWare we chose to implement it and 
measure the overheads we are paying for dynamic 
programmability. How much memory do SensorWare and 
its components occupy? How much delay is introduced by 
various SensorWare operations? How much slower and 
consequently how much more energy-consuming is 
SensorWare compared to native code approaches? These 
questions are answered in the following subsections. We 
begin by a description of the implementation platform. 

A.   Platform description 

The prototype platform used in the implementation and 
evaluation of SensorWare was built around the iPAQ 3670 
[15]. The iPAQ has an Intel StrongARM 1110 rev 8 32 bit 
RISC processor, running at 206Mhz. The flash memory 
size is 16Mbytes and the RAM memory size 64Mbytes. 
The OS installed is a familiar v0.5 Linux StrongARM port 
[9], kernel version 2.4.18-rmk3. The compiler used, is the 
gcc cross-compiler. A wavelan card [28] is used as the 
radio device and a Honeywell HMR-2300 Magnetometer 
[13] as the sensing device. 

Figure 8: The implementation platform 
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SensorWare is also ported into the Rockwell WINS 
nodes [24] that also have a StrongARM processor, but only 
1Mbyte of flash memory. Both eCos [6] and microC/OS-II 
[18] were used as operating systems for these nodes.  

B.   Memory size measurements  

The first question to answer is how much size does the 
whole framework occupy. Figure 9 shows that the total 
size is 179Kbytes and it is consisted of 74Kbytes of Linux 
specific code (e.g., kernel, libraries), 74Kbytes of a 
stripped down Tcl core called tinyTcl, 22Kbytes of 
SensorWare code and 8Kbytes of platform dependent code 
(i.e., functions to access the hardware). The bottom part of 
the figure shows the breakdown of the SensorWare core 
part into smaller parts. 
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Figure 9: Code size breakdown 

C.   Delay measurements 

The next question to answer is how long do different 
basic commands need to execute. We measured each 
command individually 100 times under the same basic 
conditions (only one script executing) and derived an 
average and standard deviation for the delay. Most 
commands exhibited negligible variance. All the 
commands, except the ones that used the radio and the one 
that spawned a 50byte script, have an execution time less 
than 0.3msec. 
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Figure 10: Execution times of SensorWare commands  

The top graph of the figure 10, shows commands with 
less than 0.06msec delay. The last two commands that 
return some part of the device's state are internal to 
SensorWare and not exported for script use. The middle 
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graph shows the most time consuming commands. The 
first one spawns a 50 byte script locally. The other two 
commands use the radio to spawn a script in a neighboring 
node and send a message in a neighboring node. The delay 
for achieve these two operations is dominated by the radio 
transmission time. Note that the send command and some 
operation modes of the spawn command, do not wait for 
the whole operation to finish, instead they return as soon as 
they hand off the task to the radio device. In the graph, the 
total operation time is shown. The bottom graph of figure 
10, shows yet another set of delays. Of particular interest is 
the set/wait timer delay. For this instance, we measure the 
delay to set a zero-valued timer and wait for its expiration. 
In essence we are measuring the overhead of real-time 
measurements in scripts. The overhead is 0.25msec with 
very small variation. Thus, we can internally subtract this 
number each time a script sets a timer, in order to measure 
the true desired time.   

In order to acquire all delay measurements we used the 
gettimeofday() system call. This function is based on the 
timer count register found in the StrongARM processor. 
The accuracy of this method is measured to be 1µsec.   

D.   Energy measurements - related tradeoffs 

Finally, we are interested in knowing the energy 
overhead from the interpreted nature of SensorWare. For 
that purpose we compare the interpreted version of the 
script presented in section V.A., with a compiled native 
code version of the same algorithm. The native version 
uses the services that SensorWare provides by directly 
calling the appropriate functions. Since most of the work 
inside a script is done by the SensorWare commands and 
services (which are implemented in native code) we do not 
expect a significant change when we resort to fully native 
code. Indeed, we measured an 8% speedup of the native 
code compared to the interpreted code. We acquired this 
number by measuring the total execution times of both 
codes, and excluding time periods when the code was 
accessing the radio, or was waiting for events to occur. 
Essentially, the time we measured, was the non-idle CPU 
time. This time is  linearly coupled with the energy spent on 
the CPU, assuming that we have a mechanism to shut 
down the CPU during idle time. Thus a reduction of 8% in 
the non-idle time, directly translates to a reduction of 8% 
in CPU-energy spent.  

As we already mentioned in section V.A, the script has 
a final compressed size of 209 bytes, while the native code 
has a size of 764 bytes. So even if the native version 
executes faster (and potentially consumes less energy, by 
allowing to shut down the CPU during idle time), there is 
an energy overhead related to its transmission. The 
wavelan radio in typical operation would spent 0.47mJ to 
transmit the script, and 1.10mJ to transmit the native code 
(including the MAC overhead). Thus, the energy 
difference between the two transmissions is 0.63mJ. The 
typical power for the StrongARM is 230mW , so 0.63mJ 
are spent in 2.7msec. From these numbers we deduce that 

if the native code uses StrongARM for 2.7msec less than 
the interpreted code then its initial transmission energy 
overhead is balanced. For the particular algorithm that we 
tested, 8% speedup is translated into 1.2msec gain in 
absolute numbers. So for the particular algorithm 
transmitting and executing native code is not beneficial 
overall. For applications with heavier computation 
workload it might be desirable, from an energy viewpoint, 
to transmit and execute native code. Note though that we 
would sacrifice the portability of the code in several 
platforms, and most importantly we would sacrifice the 
code safety offered by the scripts (refer to [2] for more 
information on scripts code safety). Furthermore, most 
sensor node platforms have a much slower radio than 
wavelan, which in turn means that they spend more energy 
to transmit the same amount of bytes , changing the 
tradeoff points. In conclusion, for most sensor node 
platforms, one would have to have a very computation-
intensive algorithm to prefer the native code over 
SensorWare scripts .  

VII. CONCLUSIONS 

In this paper we argue that the development of a 
framework based on a scripting abstraction where the 
scripts are mobile, will help bring many desired properties 
in sensor networks. It will make the sensor networks 
programmable and open to external users and systems, 
keeping at the same time the efficiency that distributed 
proactive algorithms have. We explain the framework's 
architecture and present code examples. Through our 
implementation we are able to measure the time and 
energy overheads that we are paying for programmability 
and explore some part of the solution space for sensor node 
run-time environment abstractions.   
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APPENDIX 

A.   The SensorWare Language 

SensorWare supports Tcl syntax and the following 41 
Tcl commands: append, array, break, case, catch, concat, 
continue, error, eval, expr, for, foreach, format, global, if, incr, 
info, join, lappend, lindex, linsert, list, llength, lrange, lreplace, 
lsearch, lsort, proc, regexp, regsub, rename, return, scan, set, 
split, string, trace, unset, uplevel, upvar, while. 

There are 11 other commands defined by SensorWare 
that essentially abstract the node's run-time environment. 
They are: 

spawn [ -[f] [d] [p] [m] [rc] [rs] [ru] ] [<node_list>] <code> 
[<variable_list>] 

replicate [ -[f] [d] [p] [m] [rc] [rs] [ru] ] [<node_list>]  
[<variables_list>]  

migrate [ -[f] [d] [p] [m] [rc] [rs] [ru] ] [<node_list>]  
[<variables_list>] 

send [<node_id>][:<script_name>] <message> 

setTimer  <timer_name> <value> 

disposeTimer  <timer_name> 

query <device_name> [ var_arg... ] 

act <device_name> [ var_arg... ] 

createEventID <device_name> <eventID> [ var_arg... ] 

disposeEventID <device_name> <eventID> 

wait <event_name>... 

Legend: [ ] indicates optional, < > indicates a variable 
(either a Tcl variable or an SensorWare variable such as an 
eventID or a timer name), the suffix "_list" in variable 
names indicates that the variable is a list (i.e., zero or more 
elements). The symbol "var_arg ..." indicates variable 
arguments. The modifier "..." indicates a list of arguments 
of the preceding argument type. 

There are 6 reserved Tcl variable names. These are: 
parent, neighbors, event_name, event_data, msg_sender, 
msg_body . 

There are 7 reserved words used as arguments in 
some commands. By reserving words for commonly used 
features we compact the scripts further. These are: 
anyRadioPck, anyTimer, add_user, sensor, value, radio, timer. 
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